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ABSTRACT

We study causal interaction in factorial experiments, in which several factors, each with multiple levels, are
randomized to form a large number of possible treatment combinations. Examples of such experiments
include conjoint analysis, which is often used by social scientists to analyze multidimensional preferences
in a population. To characterize the structure of causal interaction in factorial experiments, we propose a
new causal interaction effect, called the average marginal interaction effect (AMIE). Unlike the conventional
interaction effect, the relative magnitude of the AMIE does not depend on the choice of baseline condi-
tions, making its interpretation intuitive even for higher-order interactions. We show that the AMIE can
be nonparametrically estimated using ANOVA regression with weighted zero-sum constraints. Because the
AMIEs are invariant to the choice of baseline conditions, we directly regularize them by collapsing levels and
selecting factors within a penalized ANOVA framework. This regularized estimation procedure reduces false
discovery rate and further facilitates interpretation. Finally, we apply the proposed methodology to the con-
joint analysis of ethnic voting behavior in Africa and find clear patterns of causal interaction between politi-
cians’ ethnicity and their prior records. The proposed methodology is implemented in an open source soft-
ware package. Supplementary materials for this article, including a standardized description of the materials
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1. Introduction

Statistical interaction among treatment variables can be inter-
preted as causal relationships when the treatments are random-
ized in an experiment. Causal interaction plays an essential
role in the exploration of heterogenous treatment effects. This
article develops a framework for studying causal interaction
in randomized experiments with a factorial design, in which
there are multiple factorial treatments with each having several
levels. A primary goal of causal interaction analysis is to identify
the combinations of treatments that induce large additional
effects beyond the sum of effects separately attributable to each
treatment.

Our motivating application is conjoint analysis, which is a
type of randomized survey experiment with a factorial design
(Luce and Tukey 1964). Conjoint analysis has been extensively
used in marketing research to investigate consumer preferences
and predict product sales (e.g., Green, Krieger, and Wind 2001;
Marshall and Bradlow 2002). In a typical conjoint analysis,
respondents are asked to evaluate pairs of product profiles
where several characteristics of a commercial product such as
price and color are randomly chosen. Because these product
characteristics are represented by factorial variables, conjoint
analysis can be seen as an application of randomized factorial
design. Thus, the causal estimands and estimation methods
proposed in this article are widely applicable to any factorial
experiments with many factors.

Recently, conjoint analysis has also gained its popularity
among medical and social scientists who study multidimen-
sional preferences among a population of individuals (e.g.,
Marshall et al. 2010; Hainmueller and Hopkins 2015). In this
article, we focus on the latter use of conjoint analysis by estimat-
ing population average causal effects. Specifically, we analyze a
conjoint analysis about coethnic voting in Africa to examine the
conditions under which voters prefer political candidates of the
same ethnicity (see Section 2 for the details of the experiment
and Section 6 for our empirical analysis).

One important limitation of conjoint analysis, as currently
conducted in applied research, is that causal interactions are
largely ignored. This is unfortunate because studies of multi-
dimensional choice necessarily involve the consideration of
interaction effects. However, the exploration of causal interac-
tions in conjoint analysis is often difficult for two reasons. First,
the relative magnitude of the conventional causal interaction
effect depends on the choice of baseline condition. This is
problematic because many factors used in conjoint analysis do
not have natural baseline conditions (e.g., gender, racial group,
religion, occupation). Second, a typical conjoint analysis has
several factors with each having multiple levels. This means that
we must apply a regularization method to reduce false discovery
and facilitate interpretation. Yet, the lack of invariance property
means that the results of standard regularized estimation will
depend on the choice of baseline conditions.
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To overcome these problems, we propose an alternative def-
inition of causal interaction effect that is invariant to the choice
of baseline condition, making its interpretation intuitive even
for higher-order interactions (Sections 3 and 4). We call this
new causal quantity of interest, the average marginal interaction
effect (AMIE), because it marginalizes the other treatments
rather than conditioning on their baseline values as done in the
conventional causal interaction effect. The proposed approach
enables researchers to effectively summarize the structure of
causal interaction in high-dimension by decomposing the total
effect of any treatment combination into the separate effect of
each treatment and their interaction effects.

Finally, we also establish the identification condition and
develop estimation strategies for the AMIE (Section 5). We
propose a nonparametric estimator of the AMIE and show
that this estimator can be recast as an ANOVA with weighted
zero-sum constraints (Scheffe 1959). Exploiting this equiv-
alence relationship, we apply the method proposed by Post
and Bondell (2013) and directly regularize the AMIEs within
the ANOVA framework by collapsing levels and selecting fac-
tors. Because the AMIE is invariant to the choice of baseline
condition, our regularization also has the same invariance
property. This also enables a proper regularization of the
conditional average effects, which can be computed using
the AMIEs. Without the invariance property, the results of
regularized estimation will depend on the choice of baseline
conditions. All of our theoretical results and estimation strate-
gies are shown to hold for causal interaction of any order. The
proposed methodology is implemented via an open-source
software package, Findlt: Finding Heterogeneous Treatment
Effects (Egami, Ratkovic, and Imai 2017), which is available for
download at the Comprehensive R Archive Network (CRAN;
https://cran.r-project.org/package=Findlt).

Our article builds on the causal inference and experimental
design literatures that are concerned about interaction effects
(see, e.g., Cox 1984; Jaccard and Turrisi 2003; de Gonzalez and
Cox 2007; VanderWeele and Knol 2014). In addition, we draw
upon the recent articles that provide the potential outcomes
framework for causal inference with factorial experiments and
conjoint analysis (Hainmueller, Hopkins, and Yamamoto 2014;
Dasgupta, Pillai, and Rubin 2015; Lu 2016a, 2016b). Indeed, the
AMIE is a direct generalization of the average marginal effect
studied in this literature that can be used to characterize the
causal heterogeneity of a high-dimensional treatment.

Finally, this article is also related to the literature on het-
erogenous treatment effects, in which the goal of analysis is
to find an optimal treatment regime. Much of this literature,
however, focuses on the interaction between a single treatment
and pretreatment covariates (e.g., Hill 2012; Green and Kern
2012; Wager and Athey 2017; Grimmer, Messing, and West-
wood 2017) or a dynamic setting where a sequence of treatment
decisions is optimized (e.g., Murphy 2003; Robins 2004). We
emphasize that if the goal of analysis is to find an optimal
treatment regime, rather than to understand the structure of
causal heterogeneity, the marginalized causal quantities such
as the one proposed in this article may be of little use. In
such settings, researchers typically estimate the causal effects
of specific treatment combinations (e.g., Imai and Ratkovic
2013).

2. Conjoint Analysis of Ethnic Voting

Conjoint analysis has a long history dating back to the theoreti-
cal article by Luce and Tukey (1964). In terms of its application,
it has been widely used by marketing researchers over the last
40 years to measure consumer preferences and predict product
sales (Green and Rao 1971; Green, Krieger, and Wind 2001;
Marshall and Bradlow 2002). It has also become a popular
statistical tool in the medical and social sciences (e.g., Marshall
et al. 2010; Hainmueller and Hopkins 2015) to study multi-
dimensional preferences of a variety of populations such as
patients and voters.

Conjoint analysis can be considered as an application of
factorial randomized experiments. For example, in a typical
conjoint analysis used for marketing research, respondents
evaluate a commercial product whose several characteristics
such as price and color, etc., are randomly selected. Factorial
variables represent these characteristics with several levels
(e.g., $1, $5, $10 for price, and red, green, and blue for color).
Similarly, in political science research, conjoint analysis may be
used to evaluate candidates where factors may represent their
party identification, race, gender, and other attributes.

In this article, we examine a recent conjoint analysis con-
ducted to study coethnic voting in Uganda (Carlson 2015).
Coethnic voting refers to the tendency of some voters to prefer
political candidates whose ethnicity is the same as their own.
Researchers have observed that coethnic voting occurs fre-
quently among African voters, but the identification of causal
effects is often difficult because the ethnicity of candidates is
often correlated with other characteristics that may influence
voting behavior. To address this problem, the original author
conducted a conjoint analysis, in which respondents were
asked to choose one of the two hypothetical candidates whose
attributes were randomly assigned.

For the experiment, a total of 547 respondents were sampled
from villages in Uganda. We analyze a subset of 544 obser-
vations after removing three observations with missing data.
Each respondent was given the description of three pairs of
hypothetical presidential candidates. They were then asked to
cast a vote for one of the candidates within each pair. These
hypothetical candidates are characterized by a total of four
factors shown in Table 1: Coethnicity (2 levels), Record
(7 levels), Plat form (3 levels), and Degree (2 levels).

While the levels of all factors are randomly and indepen-
dently selected for each hypothetical candidate, the distribution
of candidate ethnicity depends on the local ethnic diversity
so that enough respondents share the same ethnicity as their
assigned hypothetical candidates. The original analysis was
based on a mixed effects logistic regression with a respondent
random effect. While previous studies showed that many voters
unconditionally favor coethnic candidates, Carlson (2015)
found that voters tend to favor only coethnic candidates with
good prior record.

We focus on two methodological challenges of the original
analysis. First, the author tests the existence of causal interaction
between Coethnicity and Record, but does not explicitly
estimate causal interaction effects. We propose a definition of
causal interaction effects in randomized experiments with a
factorial design and show how to estimate them. Second, the



Table 1. Levels of four factors from the conjoint analysis in Carlson (2015).

Factors Levels

Coethnicity Yes a coethnic of a respondent

No not a coethnic of a respondent
Record Yes/Village politician for a village with good prior
record
Yes/District politician for a district with good prior
record
Yes/MP member of parliament with good prior
record
No/Village politician for a village without good
prior record
No/District politician for a district without good
prior record
No/MP member of parliament without good
prior record
No/Business businessman without good prior
record
Platform Job promise to create new jobs
Clinic promise to create clinics
Education promise to improve education
Degree Yes masters degree in business, law,

economics, or development
No bachelors degree in tourism,
horticulture, forestry or theater

author dichotomized two factors, Record and Platform,
which have more than two levels and does not have a natural
baseline condition. We show how to use a data-driven regular-
ization method when estimating causal interaction effects in
a high-dimensional setting. Our reanalysis of this experiment
appears in Section 6.

3. Two-Way Causal Interaction

In this section, we introduce a new causal quantity, the
average marginal interaction effect (AMIE), and show that,
unlike the conventional causal interaction effect, it is invariant
to the choice of baseline condition. The invariance property
enables simple interpretation and effective regularization even
when there are many factors. While this section focuses on two-
way causal interaction for the sake of simplicity, all definitions
and results will be generalized beyond two-way interaction in
Section 4.

3.1. The Setup

Consider a simple random sample of n units from the target
population P. Let A; and B; be two factorial treatment vari-
ables of interest for unit i where L, and Ly be the number of
ordered or unordered levels for factors A and B, respectively.
We use a; and b,, to represent levels of the two factors where
¢£={0,1,...,L, — 1} and m={0,1,...,Lg — 1}. The sup-
port of treatment variables A and B, therefore, is given by A =
{ag, a1, ...,ar,—1}and B = {by, by, ..., br,_1}, respectively.
We call a combination of factor levels (ay, b,,) a treat-
ment combination. Thus, in the current set-up, the total
number of unique treatment combinations is Ly x Lp. Let
Y;(a¢, by,) denote the potential outcome variable of unit i
if the unit receives the treatment combination (ay, b,,). For
each unit, only one of the potential outcome variables can
be observed, and the realized outcome variable is denoted
by Yi=3>, cap,es HAi = ae, Bi = bn}Yi(ar, by), where
1{A; = a¢, B; = by,} is an indicator variable taking the value 1
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when A; = a, and B; = b,,, and taking the value 0 otherwise.
In this article, we make the stability assumption, which states
that there is neither interference between units nor different
versions of the treatment (Cox 1958; Rubin 1990).

In addition, we assume that the treatment assignment is
randomized.

{Yi(ae, by)}ayeab,esl{A;, B} foralli=1,...,n. (1)
Pr(A; =ay,Bi=b,) >0 foralla, € Aandb,, € B. (2)

This assumption rules out the use of fractional factorial designs
where certain combinations of treatments have zero probabil-
ity of occurrence. In some cases, however, researchers may wish
to eliminate certain treatment combinations for substantive rea-
sons. The standard recommendation is to set the probability for
those treatment combinations to small nonzero values under a
full factorial design so that the assumption continues to hold
(see Hainmueller, Hopkins, and Yamamoto 2014, footnote 18).
Another possibility is to restrict one’s analysis to a subset of data
and hence the corresponding subset of estimands so that the
assumption is satisfied.

Under this set-up, we review two noninteractive causal
effects of interest. First, we define the average combination effect
(ACE), which represents the average causal effect of a treat-
ment combination (A;, B;) = (ag, b,,) relative to a prespecified
baseline condition (ay, by) (e.g., Dasgupta, Pillai, and Rubin
2015):

TAB(a(Z» bm; ap, bo) = ]E{Yl‘(afv bm) - Yi(a()’ bO)}v (3)

where a;, ag € Aand b,,, by € B.

Another causal quantity of interest is the average marginal
effect (AME). For each unit, we define the marginal effect of
treatment condition A; = a, relative to a baseline condition
ay by averaging over the distribution of the other treatment
B;. Then, the AME is the population average of this unit-level
marginal effect (e.g., Hainmueller, Hopkins, and Yamamoto
2014; Dasgupta, Pillai, and Rubin 2015):

Yalag, a0) =E [/{Yi(ﬂb B;) — Yi(ao, B;)} dF(Bi)] , (4)

where ay,ap € A and B; is another factor whose distribu-
tion function is F(B;). The AME of b,, relative to by, that is,
Yg (b, by), can be defined similarly.

We emphasize that while these two causal quantities require
the specification of baseline conditions, the relative magnitude
is not sensitive to this choice. For example, if we sort the ACEs
by their relative magnitude, the resulting order does not depend
on the values of the treatment variables selected for the baseline
conditions (ag, by). The same property is applicable to the
AMEs where the choice of baseline condition ay does not alter
their relative magnitude.

3.2. The Average Marginal Interaction Effect

We propose a new two-way causal interaction effect, called
the average marginal interaction effect (AMIE), which is useful
for randomized experiments with a factorial design. For each
unit, the marginal interaction effect represents the causal effect
induced by the treatment combination beyond the sum of the
marginal effects separately attributable to each treatment. The
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AMIE is the population average of this unit-level marginal inter-
action effect. Specifically, the two-way AMIE of treatment com-
bination (ay, b,,), with baseline condition (ayg, by), is defined as

map(ag, b ao, bo)

=E |:Yi(alv by) — Yi(ag, bo)
—f{iﬁ(ﬂzyBi) — Yi(ao, B;)}dF (B;)

—fmmww—nmﬁmmnmﬁ

= Tag(a¢, bw; a0, bo) — Va(ae, ao) — ¥ (bm, bo),
(5)

where ag, a9 € A and b,,, by € B, map(ag, by; ag, by) is the
AMIE, and ¥ (-, -) is the AME defined in Equation (4).

The AMIE is closely connected to the conventional definition
of the average interaction effect (AIE). In the causal inference
literature (e.g., Cox 1984; VanderWeele 2015; Dasgupta, Pillai,
and Rubin 2015), researchers define the AIE of treatment
combination (ay, b,,,) relative to baseline condition (ag, by) as,

&ap(ac, bm; ao, bo)
= ]E{Yi(aﬁv bm) - Yvi(a()a bm) - Yi(alf’ bO) + Yvi(a(% bO)}v(6)

where a;, ag € Aand b,,, by € B.

Similar to the AMIE, the AIE has an interactive effect inter-
pretation, representing the additional average causal effect
induced by the treatment combination beyond the sum of the
average causal effects separately attributable to each treatment.
This interpretation is based on the following algebraic equality:

§ap(ae, bm; ao, bo) = tap(ac, bum; ao, bo)
—E{Yi(a¢, bo) — Yi(ao, b))}
—E{Yi(ao, by) — Yi(ao, bo)}.
(7)

The difference between the AMIE and the AIE is that the former
subtracts the AMEs from the ACE while the latter subtracts the
sum of two separate effects due to A; = a4 and B; = b,, while
holding the other treatment variable at its baseline value, that
is, A; = ag or B; = by,.

In addition, the AIE has a conditional effect interpretation,

Eap(ag, b; ag, by) = E{Yi(ae, b,y) — Yi(ao, b))}
_E{Yi(afa bO) - Yi(a()a bO)}7

which denotes the difference in the average causal effect of A; =
a, relative to A; = ay between the two scenarios, one when B; =
b,, and the other when B; = b,. When such conditional effects
are of interest, the AMIE can be used to obtain them. For exam-
ple, we have

E{Y;(a¢, bo) — Yi(ao, bo)} = ¥a(ae: ao) + mas(ae, bo; ao, bo).
(8

Clearly, the scientific question of interest should determine the
choice between the AMIE and AIE. In Section 6, we illustrate
how to use the AMIEs for estimating the average conditional
effects when necessary.

Finally, the AMIE and the AIE are linear functions of one
another. This result is presented below as a special case of The-
orem 1 presented in Section 4.

Result 1 (Relationships Between the Two-Way AMIE and the
Two-Way AIE). The two-way average marginal interaction effect
(AMIE), defined in Equation (5), equals the following lin-
ear function of the two-way average interaction effects (AIEs),
defined in Equation (6):

7aB(a¢, by ao, bo) = Eap(ag, by ao, bo)

- Z Pr(A; = a) &sp(a, by; ag, bo)
acA

— > "Pr(B; = b) &ap(a. b; ap, bo).
beBB

Likewise, the AIE can be expressed as the following linear func-
tion of the AMIEs:

Eap(ag, by; ao, by) = wap(ae, bu; ao, by) — mag(ae, bo; ao, bo)

—1ag(ao, b ag, by).

Result 1 implies that all the AMIEs are zero if and only if all
the AIEs are zero. Thus, testing the absence of causal interaction
can be done by an F-test, investigating either all the AIEs or all
the AMIEs are zero. All causal estimands introduced in this sec-
tion are identifiable under the assumption of randomized treat-
ment assignment (i.e., Equations (1) and (2)).

3.3. Invariance to the Choice of Baseline Condition

One advantage of the AMIE over the AIE is its invariance to
the choice of baseline condition. That is, the relative difference
of any pair of AMIEs remains unchanged even if one chooses
a different baseline condition. Most causal effects, including the
ACE and the AME, have this invariance property. In contrast,
the relative magnitude of any two AIEs depends on the choice
of baseline condition unless all AIEs are zero. The invariance
property is important because without it researchers cannot
systematically compare interaction effects of different treatment
combinations. We state this as Result 2, which is a special case
of Theorem 2 presented in Section 5.

Result 2 (Invariance and Lack Thereof to the Choice of Baseline
Condition). The average marginal interaction effect (AMIE),
defined in Equation (5), is interval invariant. That is, for
any (ag, bw) # (ag, byy) and (ag, by) # (a;, by, the following
equality holds,

7B (¢, by a0, bo) — map(ae, byy; ao, bo)
= map(ae, bm; a5, bz) — mag(ae, by ag, by).
Note that the above difference of the AMIEs is also equal to
another AMIE, mag(ay, by; ae, byy).
In contrast, the average interaction effect (AIE), defined in

Equation (6) does not have the invariance property. That is, the
following equality does not generally hold,

Ea(ag, by ao, by) — &ap(ae, byy; ag, by)

= Eap(ae, by; ag, b)) — Eap(ae, burs ag, by,).



In addition, the AIE is interval invariant if and only if all the
AlEs are zero.

The sensitivity of the AIEs to the choice of baseline condi-
tion can be further illustrated by the fact that the AIE of any
treatment combination pertaining to one of levels in the baseline
condition is equal to zero. That is, if (ag, by) is the baseline con-
dition, then &45(ag, by; ag, bo) = Eap(ae, bo; ag, by) = 0. If the
researchers are only interested in the conditional effect interpre-
tation of the AIEs, these zero AIEs are not of interest. However,
this restriction is problematic for the interactive effect interpre-
tation especially when no natural baseline condition exists. In
such circumstances, zero AIEs make it impossible to explore all
relevant causal interaction effects. To the contrary, researchers
need not to restrict their quantities of interest when using the
AMIE, which can take a nonzero value even when one treatment
is set to the baseline condition. For example, the AMIE can be
positive if the effect of the second treatment is large when the
first treatment is set to its baseline value.

While it is invariant to the choice of baseline condition, the
AMIE critically depends on the distribution of treatments, that
is, P(A, B). This is because the AMIE is a function of the AMEs,
which are themselves obtained by marginalizing out other
treatments. This dependency of causal quantities is not new.
The potential outcomes framework for 2* factorial experiments
introduced by Dasgupta, Pillai, and Rubin (2015), for example,
defines causal estimands based on the uniform distribution of
treatments. Many applied researchers independently randomize
multiple treatments and then estimate the AME of each treat-
ment by simply ignoring the other treatments. This estimation
procedure implicitly conditions on the empirical distribution of
treatment assignments.

Although the uniform or empirical distribution would
be a reasonable default choice for many experimentalists,
researchers can improve the external validity of their exper-
iment by using a treatment distribution based on the target
population (Hainmueller, Hopkins, and Yamamoto 2014). This
is important for the conjoint analysis, in which treatments are
often characteristics of people. In our empirical application (see
Section 2), for example, researchers could obtain the detailed
information about the attributes of actual candidates and use it
as the basis of treatment distribution.

4. Generalization to Higher-Order Interaction

In this section, we generalize the two-way AMIE introduced in
Section 3 to higher-order causal interaction with more than two
factors. We prove that a higher-order AMIE retains the same
desirable properties and intuitive interpretation.

4.1. The Setup

Suppose that we have a total of ] factorial treatments denoted by
an vector T; = (Ty, T, ..., Tyy) where J > 2 and each factor
T;; has a total of L; levels. Without loss of generality, let T}**
be a subset of K treatments of interest where K < J whereas
TEKH):] denotes the remaining (J — K) factorial treatment
variables, which are not of interest. As before, we assume that
the treatment assignment is randomized.
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Assumption 1 (Randomized Treatment Assignment).

Y;(t) 1L T; and Pr(T;=t) > 0 forallt.

In addition, we assume that J factorial treatments are inde-
pendent of one another.

Assumption 2 (Independent Treatment Assignment).

T; L T;_; forallje{l,2,...,]},

where T; _; denotes the (J — 1) factorial treatments excluding
Tjj.

Assumption 2 is not required for some of the results obtained
below, but it considerably simplifies the notation.

We now generalize the definition of the two-way ACE given
in Equation (3) by accommodating more than two factorial
treatments of interest T} while allowing for the existence of
additional treatments Ti(KH)J , which are marginalized out.

Definition 1 (The K-Way Average Combination Effect). The K-
way average combination effect (ACE) of treatment combi-
nation T}X = t"K relative to baseline condition T} = )X is

defined as,

k(1) =E [/ ’Yi(T}:K = oK TEHDT)
—Y(T% = %, TgK“”)} dF(TD7 )] ,

The generalization of the AME defined in Equation (4) to
this setting is straightforward. For example, the AME of T is
obtained by marginalizing the remaining factors Tf:] out.

4.2. The K-Way Average Marginal Interaction Effect

We now extend the definition of the two-way AMIE, given in
Equation (5), to higher-order causal interaction and discuss its
relationships with the conventional higher-order causal interac-
tion effect. We define the K-way AMIE as the additional effect
of treatment combination beyond the sum of all lower-order
AMIEs.

Definition 2 (The K-Way Average Marginal Interaction
Effect). The K-way average marginal interaction effect (AMIE)
of treatment combination TFK = 'K, relative to baseline
condition, T}X = )X, is given by,

K—-1
: : i : : i K
() = E (@ %) = > Y n (% i)

k=1 KixCKx
K-1
= x5 =Y Y me (g,

k=1 KxCKx
where K C Kx ={1,...,K} such that || =k with k=
1,...,K, rl(:%(thK ; té’K ) is the unit-level combination effect,
and 77 (£"K; t§X) is the unit-level K-way marginal interaction
effect.

This definition reduces to Equation (5) when K = 2 because
the one-way AMIE is equal to the AME, that is, m;(¢; t) =

V(2 to).
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As in the two-way case, the K-way AMIE is closely related to
the K-way AIE. To generalize the two-way AIE given in Equa-
tion (6), we first define the two-way AIE of treatment combina-
tion t'2 = (1, 1), relative to baseline condition t}? = (fo1, fo2)
by marginalizing the remaining treatments T>’. The unit-level
two-way interaction effect and the two-way AIE are defined as

£t %) =E |:f {Yz‘(fh t, T?J) — Yi(to1, t2, T?J)
= Yi(t1, toz, T?:]) + Yi(to1, toz, T?:])} dF (T?J) :| .

In addition, define the conditional two-way AIE by fixing the
level of another treatment T;3 at t*.

1o (6 t(l):z | Tis =t%)

=" |:/‘{Yi(t1’ t, t*, T?:]) — Yi(to1, 2, t*, T?:])
= Yilty, too, £°, T}) + Yitor, toa, ¢, T?J)}dF(T?:])] .

Then, the three-way AIE can be defined as the difference
between the ACE of treatment combination t'3 = (¢, t, t3)
and the sum of all conditional two-way and one-way AIEs while
conditioning on the baseline condition t)> = (to, to2, to3),

£15(t"7; téﬁ)
= 113 (t"; t(l)ﬁ) - {51:2 (t"% t(l)ﬁ | Tis = to3)
+ Es (2623 | Ty = to)) + &5t 407 | Ty = toz)}
et | TP =€) + &6t | T = t57)
+ &t tos | T = g9} )

Note that the one-way conditional AIEs are equivalent to the
average effects of single treatments while holding the other
treatments at their base level. For example, & (t;; fo1 | Tiz’3 =
t2?) is equal to T13(f1, 82; tg). We also note that & (f;; fo1) =
Y1 (t1; tor) = w1 (t1; to1) holds. In this way, we can generalize the
AIE to higher-order causal interaction.

Definition 3 (The K-Way Average Interaction Effect). The K-
way average interaction effect (AIE) of treatment combination
THK = 1K = (1, ..., tx) relative to baseline condition T}K =
toX = (to1, . .., tox) is given by,

Erx (5 157)

K—1
i . . i K, Kr\K Krx\K
= sl - X3 et =g

k=1 KyCKx

K—-1
. . K Kr\K, Kr\K,
=t 5 = Y D" B (gt TV = g,
k=1 KKy

where the second summation is taken over the set of all possi-
ble i € Kk = {1, 2, ..., K} such that || = k, tl(fll(tlzK; 70

is the unit-level combination effect, and E,(Clk) (% tolck | T:CK\’Ck =

téCK iy represents the unit-level interaction effect.

While both estimands have similar interpretations, the K-
way AMIE differs from the K-way AIE in important ways. First,
the AMIE is expressed as a function of its lower-order effects
whereas the AIE is based on the lower-order conditional AIEs
rather than the lower-order AIEs. This implies that we can

decompose the K-way ACE as the sum of the K-way AMIE and
all lower-order AMIEs.

K
. . K
Tk (K t(l)'K = Z Z T, (t%; ).

k=1 KxCKg

(10)

The decomposition is useful for understanding how interaction
effects of various order relate to the overall effect of treatment
combination. However, because of conditioning on the baseline
value, a similar decomposition is not applicable to the AIEs.

Second, in the experimental design literature, the K-way
AIE is often interpreted as a conditional interaction effect
(see, e.g., Jaccard and Turrisi 2003; Wu and Hamada 2011).
For example, the three-way AIE of treatment combination
T!® = '3 = (11, i, t3) relative to baseline condition T}? =
t(l):3 = (fo1, toz, to3)> given in Equation (9), can be rewritten as the
difference in the conditional two-way AIEs where the third fac-
torial treatment is either set to t3 or ty3,

Es (75 07) = E (027 | T = 1) — E12(825 457 | Tis = t3).

Lemma 1 shows that this equivalence relationship can be gener-
alized to the K-way AIE (see Appendix A.1).

Unfortunately, as recognized by others (see, e.g., Wu and
Hamada 2011, p. 112), although it is useful when K = 2, this
conditional interpretation faces difficulty when K is greater than
two. For example, the three-way AIE has the conditional effect
interpretation, characterizing how the conditional two-way AIE
varies as a function of the third factorial treatment. However,
according to this interpretation, the two-way AIE, which varies
according to the second treatment of interest, itself describes
how the main effect of one treatment changes as a function of
another treatment. This means that the three-way AIE is the
conditional effect of another conditional effect, making it diffi-
cult for applied researchers to gain an intuitive understanding.

Finally, as in the two-way case, we can express the K-way
AMIE and K-way AIE as linear functions of one another. The
next theorem summarizes this result.

Theorem 1 (Relationships Between the K-Way AMIE and the
K-Way AIE). Under Assumption 2, the K-way average marginal
interaction effect (AMIE), given in Definition 2, equals the fol-
lowing linear function of the K-way average interaction effects
(AIEs), given in Definition 3. That is, for any t“X and t}'X, we
have

ﬂl:K(thK; t(l):K) = Sl:K(tlzK; t(l):K)
K-1

+3=DF Y [
k=1

KirEKk
where Ky C Kx ={1,...,K} such that || =k with k=
1, ..., K. Likewise, but without requiring Assumption 2, the
K-way AIE can be written as the following linear function of the
K-way AMIEs:

e, (T, ¢\ 45)dF (T,

Kr\Kk. Kr (Lx\K
Z nle(th’tOK\ k;tok’tOI\\ “).
KrSKk

K
(1 %) = ) (=D
k=1

Proof is in Appendix A.2. All causal estimands introduced
above are identifiable under Assumption 1. We propose non-
parametric unbiased estimators in Section 5.



4.3. Invariance to the Choice of Baseline Condition

As is the case for the two-way AMIE, the K-way AMIE is
invariant to the choice of baseline condition. In contrast, the
K-way AlIEs lack this invariance property. The next theorem
generalizes Result 2 to the K-way causal interaction.

Theorem 2 (Invariance and Lack Thereof to the Choice of Base-
line Condition). The K-way average marginal interaction effect
(AMIE), given in Definition 2, is interval invariant. That is, for
any treatment combination t'X # t'"K and control condition
tiK £ )X, the following equality holds,

Tk (5 %) — w0 167

= mx (45 — T @5 1),

In contrast, the average interaction effect (AIE), given in Def-
inition 3 does not possess the invariance property. That is, the
following equality does not generally hold,

Eic, (5 %) — g (09 1))
K " K
= & (1) — B (T 66).

(11)

Proof is in Appendix A.3.

5. Estimation and Regularization

In this section, we show how to estimate the AMIE using
the general notation introduced in Section 4. For the sake of
simplicity, our discussion focuses on the two-way AMIE but we
show that all the results presented here can be generalized to
the K-way AMIE. We first introduce nonparametric estimators
based on difference in sample means. We then prove that the
AMIE can also be nonparametrically estimated using ANOVA
with weighted zero-sum constraints (Scheffe 1959).

While ANOVA is mainly used for a balanced design, our
approach is applicable to the unbalanced design as well so long
as Assumptions 1 and 2 hold. Finally, we show how to directly
regularize the AMIEs by collapsing levels and selecting factors
(Post and Bondell 2013). Because of the invariance property of
the AMIEs, this regularization method is also invariant to the
choice of baseline condition. The proposed method reduces
false discovery and facilitates interpretation when there are
many factors and levels.

5.1. Difference-in-Means Estimators

In the causal inference literature, the following difference-in-
means estimators have been used to nonparametrically estimate
the ACE and AME (e.g., Hainmueller, Hopkins, and Yamamoto
2014; Dasgupta, Pillai, and Rubin 2015):

Y YUT; = ¢, Ty = m)
YL U =Ty = m)
YL, YT = 0. Ty = 0)
XL UL =0,T; =0}
Y YT =0 YL YT, =0}
Yo UL =4 Y UL =0}

fﬂf (E, m; 0, 0) =

V(€ 0) =
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These estimators are unbiased only when the treatment assign-
ment distribution of an experimental study is used to define
the AMEs and AMIEs. Then, Definition 2 naturally implies the
following nonparametric estimator of the two-way AMIE:

Ry (€, m; 0,0) = 25 (€, m; 0,0) — ¥ (£; 0) — ¥y (m; 0).

Similarly, the nonparametric estimator of higher-order AMIE
can be constructed. It is important to emphasize that these
nonparametric estimators do not assume the absence of higher-
order interactions (Hainmueller, Hopkins, and Yamamoto
2014).

5.2. Nonparametric Estimation with ANOVA

Alternatively, the AMIEs can be estimated nonparametrically
using ANOVA with weighted zero-sum constraints, which is
a convex optimization problem (Scheffe 1959). For example,
the two-way AMIE considered above can be estimated by the
saturated ANOVA whose objective function is as follows,

n j Li—1 .
I (EESHWALEL
i=1 j=1 £=0

Lj71Lj/71

J—1 .,
=330 BT =0, Ty =m)

j=1 j>j €=0 m=0
J

2
Y X S =),

k=3 ]CkC}C/ Xk

(12)

where p is the global mean, ,BZ is the coeflicient for the first-

order term for the jth factor with ¢ level, ﬁgljﬂ is the coeflicient
for the second-order interaction term for the jth and j'th
factors with £ and m levels, respectively, and more generally 8 :,C(:
is the coefficient for the interaction term for a set of k factors
ICx when their levels are equal to t**. Note that as in Section 4,
we have |ICx| =k and K; = {1, 2,...,]J}. We emphasize that
the nonparametric estimation requires all interaction terms up
to J-way interaction. See Section 5.3 for efficient parametric
estimation.

We minimize the objective function given in Equation (12)
subject to the following weighted zero-sum constraints where
the weights are given by the marginal distribution of treatment
assignment,

Lj-1
> Pr(Tj=0)p] =0 forallj, (13)
=0
Li-1
> Pr(Tj=0p), =0 forallj#j
=0

andm e {0,1,...,Ly — 1}, (14)
Lj-1
Z Pr(T;; = O)1{t; = E}ﬁt}% =0 forall j, t,
=0

and K C Ky such thatk > 3 and j € K. (15)

Finally, the next theorem shows that the difference in the esti-
mated ANOVA coeflicients represents a nonparametric estimate
of the AMIE.
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Theorem 3 (Nonparametric Estimation with ANOVA). Under
Assumptions 1 and 2, differences in the estimated coefficients
from ANOVA based on Equations (12)-(15) represent nonpara-
metric unbiased estimators of the AME and the AMIE:

Yi(6;0), EQB — B = mjp(8,m;0,0),
= i, (%, t{,c").

E(B] — )
E(Bys — Bl)

Proof is given in Appendix A.4. These estimators are asymp-
totically equivalent to their corresponding difference-in-means
estimators when the treatment assignment distribution of an
experimental study is used as weights. The proposed ANOVA
framework, however, allows researchers to use any treatment
assignment distributions to define the AME and the AMIE so
long as Assumptions 1 and 2 hold.

5.3. Regularization

A key advantage of this ANOVA-based estimator in Section 5.2
over the difference-in-means estimator in Section 5.1 is that
we can directly regularize the AMIEs in a penalized regression
framework. The regularization is especially useful for reducing
false positives and facilitating interpretation when the number
of factors is large.

We apply the regularization method (Grouping and Selection
using Heredity in ANOVA or GASH-ANOVA) proposed by
Post and Bondell (2013), which places penalties on difference
in coefficients of the ANOVA regression. As shown above, these
differences correspond to the AMEs and AMIEs. While there
exist other regularization methods for categorical variables (e.g.,
Yuan and Lin 2006; Meier, Van De Geer, and Bithlmann 2008;
Zhao, Rocha, and Yu 2009; Huang et al. 2009; Huang, Breheny,
and Ma 2012; Lim and Hastie 2015), these methods regularize
coefficients rather than their differences. In addition, GASH-
ANOVA collapses levels and selects factors by jointly consid-
ering the AMEs and AMIEs rather than the AMEs alone. This
is attractive because many social scientists believe large interac-
tion effects can exist even when marginal effects are small. The
method also collapses levels in a mutually consistent manner.

Finally, because the AMEs and AMIEs are invariant to
the choice of baseline condition, this regularization method
also inherits the invariance property, which is not generally
the case (Lim and Hastie 2015). In particular, even if one is
interested in conditional average causal effects, regularization
should be based on the AMEs and AMIEs because of their
invariance property. As shown in Equation (8), we can compute
the conditional average effects directly from these quantities.

To illustrate the application of GASH-ANOVA, consider a
situation of practical interest in which we assume the absence
of causal interaction higher than the second order. That is,
in Equation (12), we assume /3:,% =0 for all k > 3. GASH-
ANOVA collapses two levels within a factor by directly and
jointly regularizing the AMEs and AMIEs that involve those
two levels. Define the set of all the AMEs and AMIEs that
involve levels £ and €’ of the jth factor as follows,

Ly—1

FU U U e -5

j#i m=0

i 0) ={|s - B}

Finally, the penalty is given by,
J

Z Z wge, max{¢’ (¢, £)} <,

j=1 e

where c is the cost parameter and wé o is the adaptive weight of
the following form,

wl, = [(L;+ 1)L maxig’ (¢, €)}] ",

where (L; + 1)\/L7 is the standardization factor (Bondell and
Reich 2009), and ¢/ (¢, £') represents the corresponding set
of all AMEs and AMIEs estimated without regularization.
Post and Bondell (2013) showed that, when combined with
Equations (12)-(15), the resulting optimization problem is
a quadratic programming problem. They also prove that the
method has the oracle property.

6. Empirical Analysis

We apply the proposed method to the conjoint analysis of
coethnic voting described in Section 2. Although conjoint anal-
ysis is based on the randomization of multiple factors, it differs
from factorial experiments in that respondents evaluate pairs of
randomly selected profiles. Thus, we only observe which profile
they prefer within a given pair but do not know how much
they like each profile. As shown below, this particular feature
of conjoint analysis leads to a modified formulation of ANOVA
model. As explained in Section 5, we can apply the standard
ANOVA (possibly with regularization) to estimate the AMEs
and AMIEs in a typical factorial experiment. Our analysis finds
clear patterns of causal interaction between the Record and
Coethnicity variables as well as between the Record and
Platform variables.

6.1. A Statistical Model of Preference Differentials

Our empirical application is based on the choice-based conjoint
analysis, in which respondents are asked to evaluate three pairs
of hypothetical presidential candidates in turn. Let Y;(t) be the
potential preference by respondent i for a hypothetical candidate
characterized by a vector of attributes t. In this experiment, t is
a four-dimensional vector, based on the values of factorial treat-
ments shown in Table 1 where each factor T;; has L; levels (i.e.,
{Coethnicity, Record, Platform, Degree}).

Given the limited sample size, we assume the absence of
three-way or higher-order causal interaction and use the fol-
lowing ANOVA regression model of potential outcomes with
all one-way effects and two-way interactions:

4 Lj—1
Vi) =p+> Y Bt =10
j=1 ¢=0
3 LJ—IL]'rfl
+Z Z Z Z Bl Wtij = £, tiy = m} + &(v).
j=1 j'’>j £=0 m=0
(16)

The results in Section 5.2 imply that the coefficients in this
model represent the AIEs and AMIEs.

In this conjoint analysis, respondents evaluate a pair of hypo-
thetical candidates with different attributes. This means that



we only observe whether respondent i prefers a candidate with
attributes T} over another candidate with attributes T}. Thus,
based on the model of preference given in Equation (16), we
construct a linear probability model of preference differential,

Pr(Y;(T}) > Yi(T}) | T}, T})

4 Lj—1
=ia+Y Y AWM =0-1T =1t
j=1 £=0
+Y N BE T = T =m - 1T =¢, T =m}),
j.j tm

where i = 0.5 if a position within a pair does not matter. Note
that the independence of irrelevant alternatives is assumed. If
we additionally assume the difference in errors follow indepen-
dent Type I extreme value distributions, the model becomes the
conditional logit model, which is popular in conjoint analysis
(McFadden 1974).

We minimize the sum of squared residuals, subject to the
constraints given in Equations (13) and (14) where Pr(T;; = ¢)
represents the marginal distribution of T;; and Tl;r together. We
also apply the regularization method discussed in Section 5.3.
To be consistent with the original dummy coding, we treat
Record and Platform as ordered categorical variables and
place penalties on the differences between adjacent levels rather
than the differences based on every pairwise comparison. We
use the order of levels as shown in Table 1. We choose the
uniform distribution for treatment assignment and select the
value of the cost parameter ¢ based on the minimum mean
squared error criterion in 10-fold cross-validation.

Since the inference for a regularization method that collapses
levels of factorial variables is not established in the literature
(Bithlmann and Dezeure 2016), we focus on the stability of
selection (e.g., Breiman 1996; Meinshausen and Biithlmann
2010). In particular, we estimate the selection probability for
each AME and AMIE using one minus the proportion of 5000
bootstrap replicates in which all coefficients for the correspond-
ing factor or factor interaction are estimated to be zero (Efron
2014; Hastie, Tibshirani, and Wainwright 2015). Although we
do not control the family wise error rate, we follow Meinshausen
and Bithlmann (2010) and use 90% cutoff as our default.

Another possible inferential approach is sample splitting
where we collapse levels and select factors using training data
and then estimate and compute confidence intervals for the
AMEs and AMIEs using test data (Wasserman and Roeder
2009; Athey and Imbens 2016; Chernozhukov et al. 2018).
Although we do not present the results based on this approach
here, it can be implemented through our open-source software
package, Findlt.

6.2. Findings

We begin by reporting the ranges of the estimated AMEs and
AMIEs and their selection probability to determine significant
factors and factor interactions, respectively. As shown in Table 2,
three factors—Record, Platform, and Coethnicity—
are found to be significant factors whereas Degree is not.
In terms of the AMIEs, the interaction Coethnicity X
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Table 2. Ranges of the estimated average marginal effects (AMEs) and estimated
average marginal interaction effects (AMIEs). The estimated selection probability of
the AME (AMIE) is one minus the proportion of 5000 bootstrap replicates in which
all coefficients for the corresponding factor (factor interaction) are estimated to be
zero.

Selection
Range prob.
AME
Record 0.122 1.00
Coethnicity 0.053 1.00
Platform 0.023 1.00
Degree 0.000 0.58
AMIE
Coethnicity x Record 0.054 1.00
Record x Platform 0.030 1.00
Platform x Coethnicity 0.008 0.99
Record x Degree 0.000 0.60
Coethnicity x Degree 0.000 0.60
Platform x Degree 0.000 0.60

Record, which is the basis of the main finding in the original
article, is estimated to have a large range of 5.4 percentage point,
and is selected with probability one. The range of this AMIE is
as great as that of the AME of Coethnicity and is greater
than that of Platform. Additionally, the proposed method
selects the causal interactions, Record x Platform and
Platform x Coethnicity, with probability close to one.
We focus on the two largest causal interactions, Coethnicity
x Record and Record x Platform

Next, we examine the estimated AMEs presented in
Table 3. For the Record variable, under the 90% selection
probability rule, we collapse a total of original seven lev-
els into three levels—{Yes/Village, Yes/District,
Yes/MP}, {No/Village, No/District , No/MP}, and
{No/Businessman}. This partition suggests that politicians
with good record are preferred over those without it including
businessman. Similarly, we find two groups in the Platform
variable—{Jobs, Clinic} and {Education}—where
voters appear to favor candidates with the education platform
on average.

We now investigate two significant causal interactions,
Coethnicity x Record and Record x Platform.
Figure 1 visualizes all estimated AMIEs within each factor
interaction. The cells with warmer red (colder blue) color

Table 3. The estimated average marginal effects (AMEs). The estimated selection
probability is the proportion of 5000 bootstrap replicates in which the difference
between two adjacent levels is estimated to be different from zero.

Selection
Factor AME prob.
Record
Yes/Village 0.122
{Yes/District 0.122 iggg
Yes/MP 0.101 >1.'00
No/Village 0.047 10.76
No/District 0.051 )0.84
No/MP 0.047 >0'99
No/Businessman base ’
Platform
Jo.bs' —0.023 10.80
Clinic —0.023 10.97
{ Education base ;
Coethnicity 0.053 1.00
Degree 0.000 0.57
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Figure 1. The estimated AMIEs for Coethnicity x Record (the first row) and Platform x Record (the second row). The first and second columns show the

estimated AMIEs without and with regularization, respectively.

represents a greater (smaller) AMIE than the average AMIE
within that factor interaction. The estimates with regularization
(right column) show clearer patterns for causal interaction than
those without regularization (left column).

First, regarding the Coethnicity x Record inter-
action (upper panel of the figure), for example, we
find that being coethnic gives an average bonus of 5.3
percentage point if a candidate is an MP with good
record beyond the average effect of coethnicity (selec.
prob. =1). In contrast, being coethnic has an additional
penalty of 4.6 percentage points when a candidate is a district
level politician without good record (selec. prob. = 0.98). As
shown in Equation (8), we can compute the average conditional
effect as the sum of the AME and AMIE. As expected, while the
conditional average effect of being coethnic for an MP candidate
with good record is 10.7 percentage point (selec. prob. = 1), this
effect is almost zero for an MP candidate without good record.
These findings support the argument of Carlson (2015).

The decomposition shown in Equation (10) can be used
to understand the ACE. As an illustration, we decompose
the ACE of {Coethnic, No/Business} relative to
{Non-coethnic, No/MP}, which is a estimated negative
effect of 2.4 percentage points (selec. prob. = 0.89), as follows,

t(Coethnic, No/Business;Non-coethnic, No/MP)

—2.4
= Y (Coethnic; Non-coethnic)

53
+ ¥ (No/Business; No/MP)

—4.7
+ m(Coethnic, No/Business;Non-coethnic, No/MP).

-3.0

We observe that while the average effect of being coethnic is
5.3 percentage points, being a businessman, relative to being an
MP without good record, yields an average effect of negative 4.7
percentage points. In addition, being a coethnic businessman

has an additional penalty of 3 percentage points relative to
non-coethnic MP without good record. All three estimates are
selected with probability close to one.

Finally, we examine the Platform x Record interac-
tion, which was not discussed in the original study. We find
two distinct groups: (1) politicians with record, businessmen
without record and (2) politicians without record. Candidates
in the second group appear to receive an additional penalty
by promising to improve education. Specifically, the estimated
AMIE of {Education, No/MP} relative to {Job, No/MP}
is —2.3 percentage point (selec. prob. =0.99). In fact, the
average conditional effect of Educat ion relative to Job given
No/MP is about zero (selec. prob. = 0.75). These results suggest
that even though promising to improve education is effective
on average (the estimated AME of Educat ion relative to Job
is 2.3 percentage point (selec. prob. = 0.98)), it has no effect for
politicians without record.

7. Concluding Remarks

In this article, we propose a new causal interaction effect for
randomized experiments with a factorial design, in which there
exist many factors with each having several levels. We call
this quantity, the average marginal interaction effect (AMIE).
Unlike the conventional causal interaction effect, the AMIE is
invariant to the choice of baseline. This enables us to provide a
simpler interpretation even in a high-dimensional setting. We
show how to nonparametrically estimate the AMIE within the
ANOVA regression framework. The invariance property also
enables us to apply a regularization method by directly penal-
izing the AMIEs. This reduces false discovery and facilitates
interpretation.

We emphasize that the AMIE, which is a generalization
of the average marginal effect studied in the literature on
factorial experiments, critically depends on the distribution
of treatments. For example, in a well-known audit study of
labor market discrimination where researchers randomize



the information on the resume of a fictitious job applicant
(e.g., Bertrand and Mullainathan 2004), the average effect of
applicant’s race requires the specification of other attributes
such as education levels and prior job experiences. In the real
world, these characteristics may be correlated with race and
act as an effect modifier. Thus, ideally, researchers should
obtain the target population distribution of treatments, for
example, the characteristics of job applicants in a relevant
labor market, and use it as the basis for treatment randomiza-
tion. This will improve the external validity of experimental
studies.

Finally, our method is motivated by and applied to conjoint
analysis, a popular survey experiment with a factorial design.
The methodological literature on conjoint analysis has largely
ignored the role of causal interaction. The method proposed
in this article allows researchers to effectively explore signif-
icant causal interaction among several factors. Although not
investigated in this article, future research should investigate
interaction between treatments and pretreatment covariates. It
is also of interest to develop sequential experimental designs
in the context of factorial experiments so that researchers can
efficiently reduce the number of treatments.

Supplementary Materials

In the supplementary materials, we provide proofs of all the the-
orems presented in the article.
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