This file creates blocks first to assign chief or community candidate (T2). Then, conditional on that selection, it creates blocks to divide units in treatments T3 and T4.
blocking <- read.csv("3 out/4_blocking_data.csv")
nrow(blocking)
## [1] 363
Define blocking vars.
Note that chiefdom is not included as it is categorical. It is rather included as a group for first blocking operation. First assignment is included as a group for second operation
block.vars1 = c(
"n_pop_total",
"elf",
"distance_phu_miles",
"distance_coverage_min",
"deliberation_process",
"wealth_community",
"pc_candidate",
"chief_contacted_pc",
"n_hh_with_livestock",
"days_since_chw")
block.vars2 = c(block.vars1, "longitude", "latitude")
# Check that no missing data in block vars
We have to do some imputation on vars with missing data. This mostly will not matter as data is missing mostly for units for whom assignment is notional (eg units with T1=0).
table(is.na(blocking$n_pop_total))
##
## FALSE TRUE
## 321 42
for(v in c(block.vars1, block.vars2)) {
blocking[v][[1]][is.na(blocking[v][[1]])] <- mean(blocking[v][[1]], na.rm = TRUE)}
table(is.na(blocking$n_pop_total))
##
## FALSE
## 363
Some cleaning:
blocking <- mutate(blocking, primary_stratum = (!same_candidate)*(pc_candidate + comm_candidate)==2)
blocking <-within(blocking,
primary_stratum[(!is.na(pc_candidate) | !is.na(comm_candidate)) &
is.na(primary_stratum)] <- FALSE)
blocking <- mutate(blocking, groups = (10+chiefdom_code)*primary_stratum)
blocking$groups[blocking$T1==0] <- -9
blocking$groups[is.na(blocking$groups)] <- -10 # Should be an empty category
table(is.na(blocking$groups))
##
## FALSE
## 363
table(blocking$groups, blocking$T1)
##
## 0 1
## -9 63 0
## 0 0 199
## 11 0 14
## 12 0 17
## 13 0 13
## 14 0 9
## 15 0 10
## 16 0 32
## 17 0 6
table(blocking$primary_stratum)
##
## FALSE TRUE
## 255 108
table(blocking$groups, blocking$primary_stratum)
##
## FALSE TRUE
## -9 56 7
## 0 199 0
## 11 0 14
## 12 0 17
## 13 0 13
## 14 0 9
## 15 0 10
## 16 0 32
## 17 0 6
Select chief or community nominees for CAHW.
We use blocktools.
blocking$id <- 1:nrow(blocking)
blocking$n_pop_total[is.na(blocking$n_pop_total)] <- mean(blocking$n_pop_total, na.rm = TRUE)
out1 <- block( blocking,
groups = "groups",
n.tr = 2,
id.vars = c("id"),
block.vars = c(block.vars1)
)
blocking$T2_block <- createBlockIDs(out1, blocking, id.var = "id")
kable(table(blocking$T2_block, blocking$groups)[c(1:4, 100:104),])
-9 | 0 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
100 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
101 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
102 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
103 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
104 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Note that some blocks are of uneven size which means that some blocks have only one unit. We address this by doing a random-systematic assignment, using the ordering of blocks.
# select a random unit from each block
blocking$T2_pc_candidate <- NA
temp <- floor((2*runif(1) + 1:nrow(blocking)))%%2
blocking$T2_pc_candidate[order(blocking$T2_block+runif(nrow(blocking)))] <- temp
table(blocking$groups, blocking$T2_pc_candidate, blocking$primary_stratum)
## , , = FALSE
##
##
## 0 1
## -9 27 29
## 0 99 100
## 11 0 0
## 12 0 0
## 13 0 0
## 14 0 0
## 15 0 0
## 16 0 0
## 17 0 0
##
## , , = TRUE
##
##
## 0 1
## -9 5 2
## 0 0 0
## 11 7 7
## 12 9 8
## 13 6 7
## 14 5 4
## 15 5 5
## 16 16 16
## 17 3 3
primary stratum
indicates whether in candidate experimentblock
is the blockT2_pc_candidate
is whether chief candidate select# Recode vars to clarify status of units that are not in the experimental pool
blocking <-
within(blocking,
{
T2_pc_candidate[pc_candidate==1 & comm_candidate==0] <- 1
T2_pc_candidate[pc_candidate==0 & comm_candidate==1] <- 0
T2_pc_candidate[pc_candidate==0 & comm_candidate==0] <- -9
T2_pc_candidate[T1==0] <- NA
})
table(blocking$groups, blocking$T2_pc_candidate)
##
## -9 0 1
## -9 0 0 0
## 0 11 124 64
## 11 0 7 7
## 12 0 9 8
## 13 0 6 7
## 14 0 5 4
## 15 0 5 5
## 16 0 16 16
## 17 0 3 3
kable(select(blocking, community_code, primary_stratum, groups, T1, T2_pc_candidate)[1:10,])
community_code | primary_stratum | groups | T1 | T2_pc_candidate |
---|---|---|---|---|
1 | FALSE | -9 | 0 | NA |
2 | FALSE | 0 | 1 | 0 |
3 | FALSE | 0 | 1 | 0 |
4 | FALSE | -9 | 0 | NA |
5 | FALSE | 0 | 1 | 1 |
6 | FALSE | 0 | 1 | 0 |
7 | FALSE | 0 | 1 | -9 |
8 | FALSE | 0 | 1 | 0 |
9 | TRUE | 11 | 1 | 0 |
10 | FALSE | 0 | 1 | 0 |
Now assign other two treatments in 2*2 factorial conditional on CAHW type. Not blocking now on chiefdom but on X,Y coordinates.
Groups for blocking:
blocking <- mutate(blocking, groups_2by2 = T2_pc_candidate + 10*primary_stratum)
blocking$groups_2by2[is.na(blocking$groups_2by2)] <- -1
table(blocking$groups_2by2)
##
## -9 -1 0 1 10 11
## 11 63 124 64 51 50
out2 <- block( blocking,
groups = "groups_2by2",
n.tr = 4,
id.vars = c("id"),
block.vars = c(block.vars2)
)
blocking$T3T4_block <- createBlockIDs(out2, blocking, id.var = "id")
table(blocking$T3T4_block, blocking$groups_2by2)
##
## -9 -1 0 1 10 11
## 1 0 4 0 0 0 0
## 2 0 4 0 0 0 0
## 3 0 4 0 0 0 0
## 4 0 4 0 0 0 0
## 5 0 4 0 0 0 0
## 6 0 4 0 0 0 0
## 7 0 4 0 0 0 0
## 8 0 4 0 0 0 0
## 9 0 4 0 0 0 0
## 10 0 4 0 0 0 0
## 11 0 4 0 0 0 0
## 12 0 4 0 0 0 0
## 13 0 4 0 0 0 0
## 14 0 4 0 0 0 0
## 15 0 4 0 0 0 0
## 16 0 3 0 0 0 0
## 17 4 0 0 0 0 0
## 18 4 0 0 0 0 0
## 19 3 0 0 0 0 0
## 20 0 0 4 0 0 0
## 21 0 0 4 0 0 0
## 22 0 0 4 0 0 0
## 23 0 0 4 0 0 0
## 24 0 0 4 0 0 0
## 25 0 0 4 0 0 0
## 26 0 0 4 0 0 0
## 27 0 0 4 0 0 0
## 28 0 0 4 0 0 0
## 29 0 0 4 0 0 0
## 30 0 0 4 0 0 0
## 31 0 0 4 0 0 0
## 32 0 0 4 0 0 0
## 33 0 0 4 0 0 0
## 34 0 0 4 0 0 0
## 35 0 0 4 0 0 0
## 36 0 0 4 0 0 0
## 37 0 0 4 0 0 0
## 38 0 0 4 0 0 0
## 39 0 0 4 0 0 0
## 40 0 0 4 0 0 0
## 41 0 0 4 0 0 0
## 42 0 0 4 0 0 0
## 43 0 0 4 0 0 0
## 44 0 0 4 0 0 0
## 45 0 0 4 0 0 0
## 46 0 0 4 0 0 0
## 47 0 0 4 0 0 0
## 48 0 0 4 0 0 0
## 49 0 0 4 0 0 0
## 50 0 0 4 0 0 0
## 51 0 0 0 4 0 0
## 52 0 0 0 4 0 0
## 53 0 0 0 4 0 0
## 54 0 0 0 4 0 0
## 55 0 0 0 4 0 0
## 56 0 0 0 4 0 0
## 57 0 0 0 4 0 0
## 58 0 0 0 4 0 0
## 59 0 0 0 4 0 0
## 60 0 0 0 4 0 0
## 61 0 0 0 4 0 0
## 62 0 0 0 4 0 0
## 63 0 0 0 4 0 0
## 64 0 0 0 4 0 0
## 65 0 0 0 4 0 0
## 66 0 0 0 4 0 0
## 67 0 0 0 0 4 0
## 68 0 0 0 0 4 0
## 69 0 0 0 0 4 0
## 70 0 0 0 0 4 0
## 71 0 0 0 0 4 0
## 72 0 0 0 0 4 0
## 73 0 0 0 0 4 0
## 74 0 0 0 0 4 0
## 75 0 0 0 0 4 0
## 76 0 0 0 0 4 0
## 77 0 0 0 0 4 0
## 78 0 0 0 0 4 0
## 79 0 0 0 0 3 0
## 80 0 0 0 0 0 4
## 81 0 0 0 0 0 4
## 82 0 0 0 0 0 4
## 83 0 0 0 0 0 4
## 84 0 0 0 0 0 4
## 85 0 0 0 0 0 4
## 86 0 0 0 0 0 4
## 87 0 0 0 0 0 4
## 88 0 0 0 0 0 4
## 89 0 0 0 0 0 4
## 90 0 0 0 0 0 4
## 91 0 0 0 0 0 2
## 92 0 0 0 0 0 4
Assignment:
blocking$T3T4 <- NA
temp <- 1+floor((4*runif(1) + 1:nrow(blocking)))%%4
blocking$T3T4[order(blocking$T3T4_block+runif(nrow(blocking)))] <- temp
blocking$T3T4[blocking$T1 ==0 ] <- NA
blocking <- mutate(blocking, T3_PayPerformance = 1*(T3T4 ==3 | T3T4==4))
blocking <- mutate(blocking, T4_SocialSanction = 1*(T3T4 ==2 | T3T4==4))
(with(blocking, table(T3_PayPerformance, T4_SocialSanction, groups_2by2)))
## , , groups_2by2 = -9
##
## T4_SocialSanction
## T3_PayPerformance 0 1
## 0 2 3
## 1 3 3
##
## , , groups_2by2 = -1
##
## T4_SocialSanction
## T3_PayPerformance 0 1
## 0 0 0
## 1 0 0
##
## , , groups_2by2 = 0
##
## T4_SocialSanction
## T3_PayPerformance 0 1
## 0 31 31
## 1 31 31
##
## , , groups_2by2 = 1
##
## T4_SocialSanction
## T3_PayPerformance 0 1
## 0 16 16
## 1 16 16
##
## , , groups_2by2 = 10
##
## T4_SocialSanction
## T3_PayPerformance 0 1
## 0 13 13
## 1 13 12
##
## , , groups_2by2 = 11
##
## T4_SocialSanction
## T3_PayPerformance 0 1
## 0 13 12
## 1 12 13
Assignments to T1 are constrained by unit existence; (random) assignments to T2 are constrained by presence of two distinct candidates (primary stratum = 1); assignments to T3, T4 constrained only by T1
# Top level: CAHW
table(blocking$T1)
##
## 0 1
## 63 300
# Second level: Choice of CAHW
table(blocking$T2_pc_candidate)
##
## -9 0 1
## 11 175 114
table(blocking$T1, blocking$T2_pc_candidate, blocking$primary_stratum)
## , , = FALSE
##
##
## -9 0 1
## 0 0 0 0
## 1 11 124 64
##
## , , = TRUE
##
##
## -9 0 1
## 0 0 0 0
## 1 0 51 50
# Levels 3 and 4: Incentives
table(blocking$T3_PayPerformance, blocking$T4_SocialSanction, blocking$T1)
## , , = 0
##
##
## 0 1
## 0 0 0
## 1 0 0
##
## , , = 1
##
##
## 0 1
## 0 75 75
## 1 75 75
# Note Levels 3 and 4 lose balance slightly because of missing candidates for T2:
table(blocking$T3_PayPerformance, blocking$T4_SocialSanction, blocking$T2_pc_candidate)
## , , = -9
##
##
## 0 1
## 0 2 3
## 1 3 3
##
## , , = 0
##
##
## 0 1
## 0 44 44
## 1 44 43
##
## , , = 1
##
##
## 0 1
## 0 29 28
## 1 28 29
blocking$T5_block <- blocking$T1*100 + blocking$primary_stratum*10 + blocking$T3T4
blocking$T5_session <- NA
temp <- 1+floor((10*runif(1) + 1:nrow(blocking)))%%10
blocking$T5_session[order(blocking$T5_block+runif(nrow(blocking)))] <- temp
blocking$T5_session[blocking$T1 ==0 ] <- NA
table(blocking$T5_session)
##
## 1 2 3 4 5 6 7 8 9 10
## 30 30 30 30 30 30 30 30 30 30
table(blocking$T5_session, blocking$T3T4)
##
## 1 2 3 4
## 1 7 8 7 8
## 2 7 8 7 8
## 3 7 8 7 8
## 4 8 7 8 7
## 5 8 7 8 7
## 6 8 7 8 7
## 7 8 7 8 7
## 8 8 7 8 7
## 9 7 8 7 8
## 10 7 8 7 8
summary(lm(T2_pc_candidate ~ elf + wealth_community + n_pop_total + distance_phu_miles + distance_coverage_min + deliberation_process +wealth_community + pc_candidate + chief_contacted_pc + n_hh_with_livestock + days_since_chw, data = blocking[blocking$primary_stratum ==1, ]))
##
## Call:
## lm(formula = T2_pc_candidate ~ elf + wealth_community + n_pop_total +
## distance_phu_miles + distance_coverage_min + deliberation_process +
## wealth_community + pc_candidate + chief_contacted_pc + n_hh_with_livestock +
## days_since_chw, data = blocking[blocking$primary_stratum ==
## 1, ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.70373 -0.46865 0.07974 0.47437 0.70971
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.101e-01 2.819e-01 1.100 0.2742
## elf -4.447e-02 2.189e-01 -0.203 0.8394
## wealth_community -4.238e-03 5.065e-02 -0.084 0.9335
## n_pop_total 1.548e-04 3.310e-04 0.468 0.6412
## distance_phu_miles 2.391e-02 1.397e-02 1.711 0.0905 .
## distance_coverage_min -1.011e-03 8.711e-04 -1.160 0.2490
## deliberation_process 9.999e-03 4.924e-02 0.203 0.8395
## pc_candidate NA NA NA NA
## chief_contacted_pc -6.084e-02 1.431e-01 -0.425 0.6717
## n_hh_with_livestock -7.204e-04 1.688e-03 -0.427 0.6706
## days_since_chw 3.337e-05 3.475e-05 0.960 0.3395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5094 on 91 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.06457, Adjusted R-squared: -0.02794
## F-statistic: 0.698 on 9 and 91 DF, p-value: 0.7091
summary(lm(T3_PayPerformance ~ elf + wealth_community + n_pop_total + distance_phu_miles + distance_coverage_min + deliberation_process +wealth_community + pc_candidate + chief_contacted_pc + n_hh_with_livestock + days_since_chw, data = blocking[blocking$T1 ==1, ]))
##
## Call:
## lm(formula = T3_PayPerformance ~ elf + wealth_community + n_pop_total +
## distance_phu_miles + distance_coverage_min + deliberation_process +
## wealth_community + pc_candidate + chief_contacted_pc + n_hh_with_livestock +
## days_since_chw, data = blocking[blocking$T1 == 1, ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72586 -0.49998 -0.02652 0.48495 0.75494
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.926e-01 1.375e-01 3.582 0.000399 ***
## elf 2.318e-03 1.144e-01 0.020 0.983848
## wealth_community 9.214e-04 2.743e-02 0.034 0.973225
## n_pop_total 2.302e-04 1.749e-04 1.316 0.189213
## distance_phu_miles -1.512e-03 8.768e-03 -0.172 0.863228
## distance_coverage_min -5.497e-04 6.864e-04 -0.801 0.423815
## deliberation_process 2.560e-03 2.215e-02 0.116 0.908070
## pc_candidate 4.502e-02 6.479e-02 0.695 0.487633
## chief_contacted_pc -9.561e-02 7.060e-02 -1.354 0.176708
## n_hh_with_livestock -5.564e-04 7.436e-04 -0.748 0.454908
## days_since_chw -6.718e-06 1.833e-05 -0.367 0.714219
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5053 on 289 degrees of freedom
## Multiple R-squared: 0.01623, Adjusted R-squared: -0.01781
## F-statistic: 0.4767 on 10 and 289 DF, p-value: 0.9045
summary(lm(T4_SocialSanction ~ elf + wealth_community + n_pop_total + distance_phu_miles + distance_coverage_min + deliberation_process +wealth_community + pc_candidate + chief_contacted_pc + n_hh_with_livestock + days_since_chw, data = blocking[blocking$T1 ==1, ]))
##
## Call:
## lm(formula = T4_SocialSanction ~ elf + wealth_community + n_pop_total +
## distance_phu_miles + distance_coverage_min + deliberation_process +
## wealth_community + pc_candidate + chief_contacted_pc + n_hh_with_livestock +
## days_since_chw, data = blocking[blocking$T1 == 1, ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.69235 -0.49430 0.02813 0.49358 0.69791
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.562e-01 1.374e-01 3.320 0.00102 **
## elf -1.066e-01 1.144e-01 -0.932 0.35222
## wealth_community 1.676e-02 2.741e-02 0.611 0.54139
## n_pop_total -1.420e-04 1.749e-04 -0.812 0.41740
## distance_phu_miles -2.105e-03 8.763e-03 -0.240 0.81035
## distance_coverage_min 9.031e-04 6.860e-04 1.317 0.18904
## deliberation_process -3.901e-03 2.214e-02 -0.176 0.86024
## pc_candidate 3.102e-02 6.475e-02 0.479 0.63222
## chief_contacted_pc 4.901e-02 7.056e-02 0.695 0.48791
## n_hh_with_livestock -5.395e-05 7.432e-04 -0.073 0.94218
## days_since_chw 7.282e-06 1.832e-05 0.398 0.69124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.505 on 289 degrees of freedom
## Multiple R-squared: 0.01729, Adjusted R-squared: -0.01671
## F-statistic: 0.5086 on 10 and 289 DF, p-value: 0.8837
assignments <- select(blocking, community_code, primary_stratum, T1, T2_block, T3T4_block, T2_pc_candidate, T3_PayPerformance, T4_SocialSanction, T5_session)
kable(assignments)
community_code | primary_stratum | T1 | T2_block | T3T4_block | T2_pc_candidate | T3_PayPerformance | T4_SocialSanction | T5_session |
---|---|---|---|---|---|---|---|---|
1 | FALSE | 0 | 6 | 6 | NA | NA | NA | NA |
2 | FALSE | 1 | 72 | 31 | 0 | 0 | 1 | 5 |
3 | FALSE | 1 | 97 | 45 | 0 | 0 | 1 | 10 |
4 | FALSE | 0 | 1 | 9 | NA | NA | NA | NA |
5 | FALSE | 1 | 65 | 59 | 1 | 1 | 1 | 10 |
6 | FALSE | 1 | 126 | 35 | 0 | 0 | 0 | 5 |
7 | FALSE | 1 | 62 | 17 | -9 | 0 | 0 | 2 |
8 | FALSE | 1 | 67 | 20 | 0 | 1 | 1 | 9 |
9 | TRUE | 1 | 136 | 69 | 0 | 1 | 0 | 6 |
10 | FALSE | 1 | 121 | 35 | 0 | 0 | 1 | 2 |
11 | FALSE | 1 | 64 | 41 | 0 | 1 | 0 | 10 |
12 | TRUE | 1 | 139 | 88 | 1 | 0 | 0 | 7 |
13 | TRUE | 1 | 138 | 84 | 1 | 0 | 1 | 2 |
14 | FALSE | 1 | 37 | 20 | 0 | 0 | 1 | 9 |
15 | TRUE | 1 | 133 | 72 | 0 | 1 | 1 | 3 |
16 | FALSE | 1 | 36 | 21 | 0 | 0 | 0 | 5 |
17 | FALSE | 1 | 120 | 46 | 0 | 1 | 0 | 4 |
18 | TRUE | 1 | 137 | 86 | 1 | 0 | 0 | 4 |
19 | TRUE | 1 | 137 | 76 | 0 | 0 | 0 | 6 |
20 | FALSE | 1 | 96 | 53 | 1 | 1 | 0 | 3 |
21 | FALSE | 1 | 99 | 64 | 1 | 0 | 1 | 5 |
22 | TRUE | 1 | 135 | 72 | 0 | 0 | 0 | 2 |
23 | FALSE | 0 | 4 | 1 | NA | NA | NA | NA |
24 | FALSE | 1 | 45 | 20 | 0 | 0 | 0 | 7 |
25 | FALSE | 1 | 125 | 29 | 0 | 0 | 0 | 3 |
26 | TRUE | 1 | 136 | 85 | 1 | 1 | 0 | 10 |
27 | TRUE | 1 | 138 | 77 | 0 | 1 | 0 | 7 |
28 | FALSE | 1 | 43 | 39 | 0 | 1 | 1 | 6 |
29 | FALSE | 1 | 126 | 64 | 1 | 0 | 0 | 4 |
30 | FALSE | 1 | 78 | 57 | 1 | 0 | 0 | 10 |
31 | FALSE | 0 | 30 | 13 | NA | NA | NA | NA |
32 | TRUE | 1 | 134 | 85 | 1 | 1 | 1 | 1 |
33 | FALSE | 1 | 122 | 47 | 0 | 0 | 1 | 1 |
34 | FALSE | 1 | 108 | 31 | 0 | 1 | 1 | 2 |
35 | FALSE | 0 | 26 | 13 | NA | NA | NA | NA |
36 | FALSE | 1 | 44 | 22 | 0 | 1 | 0 | 1 |
37 | FALSE | 1 | 109 | 20 | 0 | 1 | 0 | 6 |
38 | FALSE | 1 | 67 | 65 | 1 | 1 | 0 | 7 |
39 | TRUE | 1 | 133 | 84 | 1 | 1 | 0 | 9 |
40 | TRUE | 1 | 139 | 76 | 0 | 0 | 1 | 2 |
41 | TRUE | 0 | 29 | 13 | NA | NA | NA | NA |
42 | FALSE | 0 | 20 | 10 | NA | NA | NA | NA |
43 | TRUE | 1 | 135 | 81 | 1 | 1 | 0 | 4 |
44 | FALSE | 1 | 34 | 44 | 0 | 0 | 1 | 8 |
45 | FALSE | 1 | 92 | 31 | 0 | 0 | 0 | 2 |
46 | TRUE | 1 | 134 | 70 | 0 | 1 | 0 | 8 |
47 | FALSE | 0 | 3 | 5 | NA | NA | NA | NA |
48 | FALSE | 0 | 21 | 3 | NA | NA | NA | NA |
49 | FALSE | 1 | 102 | 31 | 0 | 1 | 0 | 7 |
50 | TRUE | 1 | 145 | 67 | 0 | 0 | 0 | 6 |
51 | TRUE | 1 | 144 | 76 | 0 | 1 | 1 | 4 |
52 | TRUE | 1 | 140 | 80 | 1 | 1 | 1 | 5 |
53 | TRUE | 1 | 148 | 79 | 0 | 0 | 0 | 5 |
54 | TRUE | 1 | 147 | 86 | 1 | 0 | 1 | 3 |
55 | FALSE | 1 | 116 | 63 | 1 | 1 | 1 | 7 |
56 | FALSE | 1 | 42 | 23 | 0 | 0 | 1 | 10 |
57 | TRUE | 0 | 22 | 14 | NA | NA | NA | NA |
58 | TRUE | 1 | 141 | 87 | 1 | 0 | 1 | 1 |
59 | FALSE | 0 | 13 | 12 | NA | NA | NA | NA |
60 | FALSE | 1 | 46 | 55 | 1 | 1 | 1 | 3 |
61 | FALSE | 1 | 76 | 51 | 1 | 0 | 1 | 8 |
62 | TRUE | 1 | 147 | 73 | 0 | 0 | 1 | 1 |
63 | FALSE | 0 | 19 | 2 | NA | NA | NA | NA |
64 | TRUE | 1 | 142 | 73 | 0 | 0 | 0 | 3 |
65 | TRUE | 1 | 140 | 67 | 0 | 1 | 1 | 3 |
66 | TRUE | 1 | 143 | 82 | 1 | 0 | 1 | 3 |
67 | TRUE | 1 | 146 | 71 | 0 | 1 | 1 | 9 |
68 | TRUE | 1 | 143 | 71 | 0 | 1 | 0 | 7 |
69 | TRUE | 1 | 141 | 68 | 0 | 1 | 0 | 8 |
70 | FALSE | 1 | 82 | 56 | 1 | 1 | 1 | 3 |
71 | FALSE | 1 | 125 | 58 | 1 | 0 | 0 | 6 |
72 | TRUE | 1 | 142 | 87 | 1 | 1 | 1 | 2 |
73 | TRUE | 1 | 144 | 88 | 1 | 0 | 1 | 5 |
74 | FALSE | 0 | 20 | 8 | NA | NA | NA | NA |
75 | TRUE | 1 | 146 | 83 | 1 | 0 | 0 | 7 |
76 | TRUE | 1 | 145 | 80 | 1 | 0 | 0 | 7 |
77 | TRUE | 1 | 149 | 85 | 1 | 0 | 0 | 5 |
78 | FALSE | 1 | 45 | 57 | 1 | 1 | 1 | 8 |
79 | FALSE | 1 | 40 | 24 | 0 | 0 | 0 | 10 |
80 | FALSE | 1 | 98 | 46 | 0 | 0 | 1 | 4 |
81 | FALSE | 0 | 2 | 10 | NA | NA | NA | NA |
82 | FALSE | 1 | 124 | 37 | 0 | 0 | 0 | 10 |
83 | FALSE | 1 | 39 | 57 | 1 | 0 | 1 | 10 |
84 | FALSE | 0 | 16 | 4 | NA | NA | NA | NA |
85 | FALSE | 1 | 40 | 24 | 0 | 1 | 0 | 10 |
86 | TRUE | 1 | 153 | 77 | 0 | 0 | 0 | 10 |
87 | FALSE | 1 | 68 | 37 | 0 | 1 | 1 | 9 |
88 | FALSE | 1 | 107 | 35 | 0 | 1 | 1 | 6 |
89 | TRUE | 1 | 150 | 69 | 0 | 1 | 1 | 2 |
90 | TRUE | 1 | 152 | 90 | 1 | 1 | 0 | 10 |
91 | FALSE | 0 | 21 | 7 | NA | NA | NA | NA |
92 | FALSE | 1 | 114 | 48 | 0 | 0 | 0 | 2 |
93 | FALSE | 0 | 22 | 15 | NA | NA | NA | NA |
94 | FALSE | 1 | 71 | 19 | -9 | 1 | 1 | 4 |
96 | FALSE | 1 | 54 | 24 | 0 | 1 | 1 | 8 |
97 | TRUE | 1 | 150 | 84 | 1 | 0 | 0 | 6 |
98 | FALSE | 0 | 18 | 8 | NA | NA | NA | NA |
99 | FALSE | 1 | 123 | 57 | 1 | 1 | 0 | 10 |
100 | TRUE | 1 | 151 | 74 | 0 | 0 | 1 | 8 |
101 | TRUE | 1 | 154 | 76 | 0 | 1 | 0 | 2 |
102 | FALSE | 0 | 1 | 10 | NA | NA | NA | NA |
103 | TRUE | 1 | 152 | 72 | 0 | 1 | 0 | 4 |
104 | TRUE | 1 | 154 | 90 | 1 | 1 | 1 | 9 |
105 | FALSE | 1 | 76 | 54 | 1 | 1 | 1 | 2 |
106 | TRUE | 1 | 155 | 91 | 1 | 1 | 1 | 5 |
108 | FALSE | 1 | 78 | 48 | 0 | 1 | 0 | 2 |
109 | FALSE | 1 | 64 | 65 | 1 | 0 | 0 | 4 |
110 | FALSE | 1 | 100 | 40 | 0 | 1 | 0 | 6 |
111 | FALSE | 1 | 123 | 48 | 0 | 1 | 1 | 4 |
112 | FALSE | 1 | 66 | 33 | 0 | 1 | 1 | 4 |
113 | FALSE | 1 | 132 | 50 | 0 | 1 | 0 | 9 |
114 | TRUE | 1 | 149 | 69 | 0 | 0 | 1 | 5 |
115 | FALSE | 1 | 41 | 48 | 0 | 0 | 1 | 1 |
116 | FALSE | 1 | 106 | 18 | -9 | 0 | 0 | 4 |
117 | TRUE | 1 | 151 | 90 | 1 | 0 | 0 | 9 |
118 | FALSE | 1 | 106 | 24 | 0 | 0 | 1 | 7 |
119 | TRUE | 0 | 32 | 16 | NA | NA | NA | NA |
120 | TRUE | 1 | 153 | 85 | 1 | 0 | 1 | 4 |
121 | FALSE | 1 | 107 | 35 | 0 | 1 | 0 | 5 |
122 | FALSE | 0 | 5 | 1 | NA | NA | NA | NA |
123 | FALSE | 0 | 2 | 2 | NA | NA | NA | NA |
124 | FALSE | 1 | 73 | 39 | 0 | 0 | 0 | 7 |
125 | FALSE | 1 | 68 | 65 | 1 | 1 | 1 | 1 |
126 | TRUE | 1 | 159 | 90 | 1 | 0 | 1 | 4 |
127 | FALSE | 1 | 77 | 41 | 0 | 1 | 1 | 9 |
128 | FALSE | 0 | 14 | 2 | NA | NA | NA | NA |
129 | FALSE | 1 | 41 | 32 | 0 | 1 | 0 | 4 |
130 | FALSE | 1 | 124 | 49 | 0 | 0 | 1 | 10 |
131 | FALSE | 1 | 129 | 19 | -9 | 0 | 1 | 2 |
132 | FALSE | 1 | 94 | 62 | 1 | 0 | 0 | 9 |
134 | FALSE | 1 | 63 | 58 | 1 | 1 | 0 | 5 |
135 | FALSE | 0 | 3 | 2 | NA | NA | NA | NA |
136 | FALSE | 0 | 4 | 1 | NA | NA | NA | NA |
137 | FALSE | 1 | 118 | 17 | -9 | 1 | 0 | 1 |
138 | FALSE | 0 | 9 | 3 | NA | NA | NA | NA |
139 | FALSE | 1 | 58 | 18 | -9 | 0 | 1 | 8 |
140 | FALSE | 1 | 113 | 45 | 0 | 1 | 1 | 7 |
141 | FALSE | 1 | 93 | 63 | 1 | 1 | 0 | 10 |
142 | FALSE | 1 | 112 | 17 | -9 | 1 | 1 | 10 |
143 | FALSE | 1 | 57 | 59 | 1 | 0 | 1 | 8 |
144 | FALSE | 0 | 10 | 3 | NA | NA | NA | NA |
145 | FALSE | 1 | 75 | 56 | 1 | 0 | 1 | 7 |
146 | FALSE | 1 | 48 | 58 | 1 | 0 | 1 | 3 |
147 | FALSE | 1 | 127 | 43 | 0 | 0 | 0 | 5 |
148 | FALSE | 1 | 129 | 19 | -9 | 1 | 0 | 3 |
149 | FALSE | 1 | 131 | 66 | 1 | 1 | 0 | 9 |
150 | FALSE | 1 | 43 | 28 | 0 | 1 | 0 | 8 |
151 | FALSE | 1 | 54 | 34 | 0 | 1 | 1 | 3 |
152 | TRUE | 1 | 160 | 79 | 0 | 0 | 1 | 7 |
153 | FALSE | 1 | 119 | 61 | 1 | 0 | 0 | 4 |
154 | TRUE | 1 | 157 | 74 | 0 | 1 | 0 | 5 |
155 | FALSE | 1 | 88 | 52 | 1 | 0 | 0 | 3 |
156 | FALSE | 1 | 60 | 29 | 0 | 1 | 0 | 1 |
157 | FALSE | 1 | 89 | 36 | 0 | 1 | 0 | 3 |
158 | FALSE | 0 | 8 | 3 | NA | NA | NA | NA |
159 | FALSE | 1 | 119 | 38 | 0 | 0 | 1 | 5 |
160 | FALSE | 1 | 118 | 49 | 0 | 0 | 0 | 1 |
161 | FALSE | 0 | 5 | 4 | NA | NA | NA | NA |
162 | TRUE | 1 | 156 | 84 | 1 | 1 | 1 | 1 |
163 | FALSE | 1 | 52 | 33 | 0 | 1 | 0 | 10 |
164 | FALSE | 1 | 104 | 47 | 0 | 1 | 0 | 3 |
165 | FALSE | 1 | 50 | 28 | 0 | 1 | 1 | 9 |
166 | FALSE | 1 | 69 | 27 | 0 | 0 | 0 | 9 |
167 | FALSE | 1 | 69 | 51 | 1 | 1 | 1 | 3 |
168 | FALSE | 1 | 58 | 34 | 0 | 0 | 1 | 6 |
169 | FALSE | 1 | 66 | 60 | 1 | 0 | 0 | 3 |
170 | FALSE | 0 | 7 | 5 | NA | NA | NA | NA |
171 | FALSE | 1 | 111 | 30 | 0 | 0 | 1 | 8 |
172 | FALSE | 1 | 108 | 36 | 0 | 0 | 1 | 5 |
173 | FALSE | 1 | 50 | 28 | 0 | 0 | 0 | 5 |
174 | FALSE | 1 | 105 | 49 | 0 | 1 | 0 | 2 |
175 | FALSE | 1 | 127 | 43 | 0 | 1 | 0 | 4 |
176 | FALSE | 0 | 6 | 5 | NA | NA | NA | NA |
177 | FALSE | 1 | 100 | 40 | 0 | 0 | 1 | 6 |
178 | FALSE | 0 | 7 | 5 | NA | NA | NA | NA |
179 | TRUE | 1 | 158 | 75 | 0 | 0 | 0 | 8 |
180 | TRUE | 1 | 156 | 69 | 0 | 0 | 0 | 1 |
181 | FALSE | 1 | 85 | 18 | -9 | 1 | 0 | 4 |
182 | TRUE | 1 | 157 | 82 | 1 | 1 | 0 | 8 |
183 | FALSE | 1 | 130 | 66 | 1 | 0 | 0 | 2 |
184 | FALSE | 1 | 105 | 58 | 1 | 1 | 1 | 9 |
185 | FALSE | 1 | 104 | 47 | 0 | 0 | 0 | 1 |
186 | FALSE | 1 | 51 | 38 | 0 | 1 | 0 | 8 |
187 | TRUE | 1 | 158 | 92 | 1 | 1 | 0 | 3 |
188 | FALSE | 0 | 17 | 6 | NA | NA | NA | NA |
189 | FALSE | 1 | 71 | 18 | -9 | 1 | 1 | 1 |
190 | TRUE | 1 | 159 | 78 | 0 | 0 | 0 | 8 |
191 | FALSE | 1 | 34 | 51 | 1 | 1 | 0 | 9 |
192 | FALSE | 1 | 53 | 46 | 0 | 1 | 1 | 1 |
193 | FALSE | 1 | 98 | 56 | 1 | 1 | 0 | 2 |
194 | FALSE | 0 | 8 | 6 | NA | NA | NA | NA |
195 | FALSE | 1 | 48 | 27 | 0 | 0 | 1 | 9 |
196 | FALSE | 1 | 95 | 66 | 1 | 1 | 1 | 3 |
197 | FALSE | 1 | 60 | 29 | 0 | 1 | 1 | 10 |
198 | FALSE | 1 | 117 | 38 | 0 | 0 | 0 | 1 |
199 | FALSE | 1 | 35 | 30 | 0 | 1 | 0 | 1 |
200 | FALSE | 1 | 101 | 61 | 1 | 0 | 1 | 4 |
201 | TRUE | 1 | 165 | 78 | 0 | 1 | 1 | 7 |
202 | FALSE | 1 | 93 | 44 | 0 | 0 | 0 | 8 |
203 | FALSE | 1 | 74 | 32 | 0 | 0 | 1 | 9 |
204 | FALSE | 1 | 92 | 36 | 0 | 1 | 1 | 4 |
205 | FALSE | 0 | 9 | 6 | NA | NA | NA | NA |
206 | FALSE | 1 | 79 | 44 | 0 | 1 | 1 | 5 |
207 | FALSE | 1 | 91 | 26 | 0 | 1 | 0 | 5 |
208 | TRUE | 1 | 164 | 75 | 0 | 1 | 1 | 4 |
209 | FALSE | 1 | 46 | 55 | 1 | 0 | 1 | 7 |
210 | FALSE | 1 | 112 | 66 | 1 | 0 | 1 | 7 |
211 | FALSE | 1 | 47 | 23 | 0 | 1 | 1 | 5 |
212 | FALSE | 1 | 81 | 42 | 0 | 1 | 1 | 7 |
213 | FALSE | 1 | 81 | 60 | 1 | 0 | 1 | 4 |
214 | TRUE | 1 | 163 | 75 | 0 | 0 | 1 | 10 |
215 | TRUE | 1 | 162 | 68 | 0 | 0 | 1 | 1 |
216 | FALSE | 1 | 90 | 32 | 0 | 0 | 0 | 10 |
217 | FALSE | 1 | 80 | 26 | 0 | 1 | 1 | 1 |
218 | TRUE | 1 | 163 | 82 | 1 | 0 | 0 | 4 |
219 | FALSE | 0 | 11 | 7 | NA | NA | NA | NA |
220 | FALSE | 1 | 87 | 40 | 0 | 1 | 1 | 7 |
221 | FALSE | 1 | 75 | 43 | 0 | 0 | 1 | 3 |
222 | FALSE | 0 | 10 | 7 | NA | NA | NA | NA |
223 | FALSE | 1 | 47 | 26 | 0 | 0 | 0 | 7 |
224 | FALSE | 1 | 70 | 26 | 0 | 0 | 1 | 1 |
225 | TRUE | 1 | 162 | 80 | 1 | 1 | 0 | 5 |
226 | TRUE | 1 | 161 | 68 | 0 | 1 | 1 | 10 |
227 | TRUE | 1 | 161 | 82 | 1 | 1 | 1 | 10 |
228 | FALSE | 0 | 12 | 7 | NA | NA | NA | NA |
229 | FALSE | 1 | 84 | 60 | 1 | 1 | 1 | 2 |
230 | FALSE | 1 | 121 | 56 | 1 | 0 | 0 | 8 |
231 | FALSE | 1 | 113 | 45 | 0 | 0 | 0 | 4 |
232 | FALSE | 1 | 101 | 49 | 0 | 1 | 1 | 5 |
233 | TRUE | 1 | 164 | 87 | 1 | 1 | 0 | 2 |
234 | FALSE | 1 | 74 | 17 | -9 | 0 | 1 | 3 |
235 | TRUE | 1 | 165 | 89 | 1 | 1 | 1 | 6 |
236 | FALSE | 1 | 85 | 42 | 0 | 1 | 0 | 9 |
238 | FALSE | 0 | 31 | 16 | NA | NA | NA | NA |
239 | FALSE | 1 | 87 | 40 | 0 | 0 | 0 | 6 |
240 | FALSE | 0 | 11 | 4 | NA | NA | NA | NA |
241 | FALSE | 0 | 12 | 4 | NA | NA | NA | NA |
242 | FALSE | 0 | 23 | 11 | NA | NA | NA | NA |
243 | FALSE | 1 | 63 | 37 | 0 | 1 | 0 | 7 |
244 | FALSE | 1 | 128 | 61 | 1 | 1 | 1 | 2 |
245 | FALSE | 0 | 29 | 14 | NA | NA | NA | NA |
246 | TRUE | 1 | 173 | 73 | 0 | 1 | 0 | 1 |
247 | FALSE | 1 | 115 | 33 | 0 | 0 | 0 | 9 |
248 | TRUE | 1 | 167 | 81 | 1 | 0 | 1 | 6 |
249 | TRUE | 1 | 171 | 83 | 1 | 1 | 1 | 8 |
250 | FALSE | 1 | 73 | 39 | 0 | 1 | 0 | 2 |
251 | FALSE | 0 | 27 | 12 | NA | NA | NA | NA |
252 | FALSE | 0 | 31 | 16 | NA | NA | NA | NA |
253 | TRUE | 1 | 179 | 77 | 0 | 1 | 1 | 10 |
254 | TRUE | 1 | 181 | 88 | 1 | 1 | 0 | 1 |
256 | FALSE | 1 | 55 | 22 | 0 | 0 | 0 | 8 |
257 | FALSE | 1 | 110 | 27 | 0 | 1 | 0 | 6 |
258 | FALSE | 1 | 36 | 21 | 0 | 1 | 1 | 5 |
259 | FALSE | 0 | 13 | 9 | NA | NA | NA | NA |
260 | TRUE | 1 | 174 | 89 | 1 | 1 | 0 | 3 |
261 | FALSE | 0 | 15 | 1 | NA | NA | NA | NA |
262 | TRUE | 1 | 176 | 73 | 0 | 1 | 1 | 9 |
263 | FALSE | 1 | 61 | 37 | 0 | 0 | 1 | 2 |
264 | TRUE | 1 | 175 | 72 | 0 | 0 | 1 | 6 |
265 | FALSE | 1 | 51 | 29 | 0 | 0 | 1 | 6 |
266 | FALSE | 1 | 83 | 41 | 0 | 0 | 0 | 7 |
267 | FALSE | 1 | 49 | 52 | 1 | 1 | 1 | 10 |
268 | TRUE | 0 | 26 | 13 | NA | NA | NA | NA |
269 | FALSE | 0 | 14 | 10 | NA | NA | NA | NA |
270 | FALSE | 1 | 52 | 54 | 1 | 1 | 0 | 7 |
271 | FALSE | 1 | 114 | 47 | 0 | 1 | 1 | 6 |
272 | FALSE | 1 | 44 | 55 | 1 | 1 | 0 | 6 |
273 | TRUE | 1 | 175 | 88 | 1 | 1 | 1 | 3 |
274 | TRUE | 1 | 176 | 86 | 1 | 1 | 0 | 7 |
275 | FALSE | 1 | 117 | 38 | 0 | 1 | 1 | 5 |
276 | FALSE | 1 | 38 | 23 | 0 | 0 | 0 | 2 |
277 | FALSE | 1 | 59 | 62 | 1 | 1 | 1 | 10 |
278 | FALSE | 0 | 15 | 12 | NA | NA | NA | NA |
279 | FALSE | 1 | 70 | 39 | 0 | 0 | 1 | 3 |
280 | TRUE | 1 | 174 | 71 | 0 | 0 | 1 | 7 |
281 | FALSE | 0 | 30 | 15 | NA | NA | NA | NA |
282 | FALSE | 1 | 95 | 41 | 0 | 0 | 1 | 1 |
283 | FALSE | 1 | 103 | 52 | 1 | 0 | 1 | 4 |
284 | FALSE | 1 | 111 | 42 | 0 | 0 | 0 | 8 |
285 | FALSE | 1 | 37 | 51 | 1 | 0 | 0 | 5 |
287 | FALSE | 1 | 120 | 64 | 1 | 1 | 1 | 4 |
288 | FALSE | 1 | 56 | 53 | 1 | 0 | 0 | 9 |
289 | TRUE | 1 | 168 | 80 | 1 | 0 | 1 | 2 |
290 | FALSE | 0 | 24 | 11 | NA | NA | NA | NA |
291 | FALSE | 0 | 16 | 8 | NA | NA | NA | NA |
292 | FALSE | 0 | 17 | 8 | NA | NA | NA | NA |
293 | FALSE | 1 | 97 | 45 | 0 | 1 | 0 | 8 |
294 | TRUE | 1 | 181 | 79 | 0 | 1 | 0 | 9 |
295 | FALSE | 1 | 80 | 21 | 0 | 0 | 1 | 10 |
296 | FALSE | 0 | 27 | 14 | NA | NA | NA | NA |
297 | FALSE | 1 | 79 | 54 | 1 | 0 | 1 | 1 |
298 | TRUE | 1 | 173 | 86 | 1 | 1 | 1 | 1 |
299 | TRUE | 1 | 170 | 83 | 1 | 0 | 1 | 9 |
300 | TRUE | 1 | 180 | 78 | 0 | 1 | 0 | 6 |
302 | FALSE | 1 | 115 | 64 | 1 | 1 | 0 | 5 |
303 | TRUE | 1 | 179 | 87 | 1 | 0 | 0 | 5 |
304 | TRUE | 0 | 25 | 14 | NA | NA | NA | NA |
305 | TRUE | 1 | 177 | 75 | 0 | 1 | 0 | 5 |
306 | FALSE | 1 | 65 | 59 | 1 | 1 | 0 | 6 |
307 | FALSE | 1 | 131 | 50 | 0 | 0 | 0 | 10 |
308 | TRUE | 1 | 166 | 70 | 0 | 0 | 0 | 4 |
309 | FALSE | 1 | 88 | 33 | 0 | 0 | 1 | 9 |
310 | FALSE | 1 | 110 | 59 | 1 | 0 | 0 | 8 |
311 | FALSE | 1 | 109 | 55 | 1 | 0 | 0 | 9 |
312 | FALSE | 1 | 86 | 25 | 0 | 1 | 1 | 8 |
313 | FALSE | 1 | 128 | 50 | 0 | 0 | 1 | 6 |
314 | FALSE | 1 | 59 | 25 | 0 | 1 | 0 | 2 |
315 | FALSE | 1 | 57 | 27 | 0 | 1 | 1 | 8 |
316 | TRUE | 1 | 178 | 68 | 0 | 0 | 0 | 8 |
317 | TRUE | 1 | 169 | 71 | 0 | 0 | 0 | 3 |
318 | FALSE | 1 | 83 | 53 | 1 | 1 | 1 | 6 |
319 | FALSE | 1 | 55 | 62 | 1 | 0 | 1 | 7 |
320 | FALSE | 1 | 116 | 22 | 0 | 0 | 1 | 5 |
321 | FALSE | 1 | 82 | 46 | 0 | 0 | 0 | 6 |
322 | TRUE | 1 | 177 | 91 | 1 | 0 | 0 | 9 |
323 | TRUE | 1 | 171 | 67 | 0 | 0 | 1 | 10 |
324 | FALSE | 0 | 18 | 9 | NA | NA | NA | NA |
325 | TRUE | 1 | 172 | 70 | 0 | 0 | 1 | 10 |
326 | FALSE | 1 | 38 | 23 | 0 | 1 | 0 | 4 |
327 | FALSE | 1 | 62 | 21 | 0 | 1 | 0 | 8 |
328 | TRUE | 1 | 170 | 77 | 0 | 0 | 1 | 9 |
329 | TRUE | 1 | 166 | 81 | 1 | 1 | 1 | 2 |
330 | FALSE | 1 | 39 | 25 | 0 | 0 | 1 | 9 |
331 | FALSE | 1 | 61 | 61 | 1 | 1 | 0 | 3 |
332 | TRUE | 1 | 180 | 92 | 1 | 0 | 0 | 3 |
333 | FALSE | 1 | 72 | 30 | 0 | 1 | 1 | 7 |
334 | FALSE | 1 | 42 | 28 | 0 | 0 | 1 | 3 |
335 | TRUE | 0 | 25 | 12 | NA | NA | NA | NA |
336 | FALSE | 1 | 77 | 65 | 1 | 0 | 1 | 4 |
337 | FALSE | 1 | 33 | 25 | 0 | 0 | 0 | 7 |
338 | FALSE | 1 | 130 | 50 | 0 | 1 | 1 | 1 |
339 | TRUE | 1 | 168 | 67 | 0 | 1 | 0 | 6 |
340 | FALSE | 1 | 99 | 43 | 0 | 1 | 1 | 6 |
341 | TRUE | 1 | 167 | 70 | 0 | 1 | 1 | 7 |
342 | FALSE | 1 | 94 | 22 | 0 | 1 | 1 | 2 |
343 | FALSE | 1 | 33 | 54 | 1 | 0 | 0 | 1 |
344 | TRUE | 1 | 169 | 81 | 1 | 0 | 0 | 1 |
345 | FALSE | 1 | 89 | 36 | 0 | 0 | 0 | 3 |
346 | TRUE | 1 | 172 | 83 | 1 | 1 | 0 | 4 |
347 | FALSE | 1 | 96 | 53 | 1 | 0 | 1 | 6 |
348 | FALSE | 0 | 23 | 11 | NA | NA | NA | NA |
349 | FALSE | 1 | 90 | 32 | 0 | 1 | 1 | 8 |
350 | TRUE | 1 | 178 | 89 | 1 | 0 | 0 | 10 |
351 | FALSE | 1 | 84 | 60 | 1 | 1 | 0 | 7 |
352 | TRUE | 0 | 24 | 11 | NA | NA | NA | NA |
353 | FALSE | 1 | 103 | 44 | 0 | 1 | 0 | 9 |
354 | FALSE | 1 | 35 | 42 | 0 | 0 | 1 | 2 |
355 | TRUE | 1 | 184 | 92 | 1 | 1 | 1 | 6 |
356 | FALSE | 1 | 53 | 63 | 1 | 0 | 1 | 2 |
357 | FALSE | 0 | 19 | 9 | NA | NA | NA | NA |
358 | TRUE | 1 | 184 | 74 | 0 | 0 | 0 | 2 |
359 | FALSE | 1 | 122 | 34 | 0 | 0 | 0 | 1 |
360 | FALSE | 1 | 102 | 30 | 0 | 0 | 0 | 6 |
361 | TRUE | 1 | 183 | 78 | 0 | 0 | 1 | 8 |
362 | FALSE | 1 | 86 | 62 | 1 | 1 | 0 | 8 |
363 | FALSE | 1 | 56 | 63 | 1 | 0 | 0 | 6 |
364 | FALSE | 0 | 28 | 15 | NA | NA | NA | NA |
365 | FALSE | 1 | 91 | 34 | 0 | 1 | 0 | 1 |
366 | FALSE | 1 | 49 | 52 | 1 | 1 | 0 | 5 |
367 | TRUE | 1 | 182 | 89 | 1 | 0 | 1 | 3 |
368 | TRUE | 1 | 182 | 74 | 0 | 1 | 1 | 8 |
369 | FALSE | 0 | 28 | 15 | NA | NA | NA | NA |
370 | TRUE | 1 | 183 | 92 | 1 | 0 | 1 | 9 |
write.csv(blocking, paste0("3 out/5_finalblocking_", format(Sys.time(), "%d%b%Y"), ".csv"))
write.csv(assignments, paste0("3 out/6_assignments_", format(Sys.time(), "%d%b%Y"), ".csv"))