Can trust be built through citizen monitoring of police activity?

Pre-Analysis Plan

Emile Badran, Thiemo Fetzer, Robert Muggah, Pedro CL Souza

November 2018

Abstract

New technologies can improve oversight, management of police and, through this process, enhance public confidence and gain citizens’ trust. In this project, we study the effects of two programs that make use of new technologies to improve the interaction between the police and citizens in the state of Santa Catarina, Brazil. More specifically, we evaluate the effects of: i) the Rede de Vizinhos (“Neighbor network”) community policing program, through which citizens exchange real-time information about crime and public safety through dedicated WhatsApp instant messages groups with the participation of a police officer; and ii) the introduction of police body-worn cameras on use of force and citizen’s complaints.
Introduction

2. Motivation
 2.1 Background and violence in Brazil
 2.2 Background on Rede de Vizinhos
 2.3 Background on Police Use of Body-worn Cameras

3. Theory
 3.1 Rede de Vizinhos
 3.2 Body-worn cameras

4. Description of Treatments and Experimental Design
 4.1 Rede de Vizinhos
 4.2 Body-worn cameras

5. Experimental Design
 5.1 Rede de Vizinhos
 5.2 Body-worn Cameras

6. Data and Outcome Measurement Strategy
 6.1 Administrative data
 6.2 Data from Independent Police Watchdogs
 6.3 Survey data and survey design

7. Hypotheses
 7.1 Rede de Vizinhos
 7.2 Body-worn Cameras

8. Analysis

9. Simulations and Power
 9.1 Rede de Vizinhos
 9.2 CopCast

References

Appendix I. Standard Operational Procedure for Body-Worn Cameras (in portuguese)
1. Introduction

New technologies can improve oversight, management of police and, through this process, enhance public confidence and gain citizens’ trust. Working in Brazil, in partnership with the Military Police of the state of Santa Catarina (PMSC), we study the effects of two statewide programs that make use of new technologies to build trust between citizens and the police and to improve public safety:

a) The Rede de Vizinhos (RdV - "Neighbor Network") is a community policing program in which police officers engage with local communities through dedicated instant-messaging groups and on-site visits. It is based on the principle that efficient and more continuous communication with dedicated police contacts improves the quality of police response to crime and facilitates the implementation of prevention measures aiming to reduce crime at a fine, spatial neighborhood level within the cities. The program educates residents on security and safety and the reporting of suspicious incidents to the police, creates a closer bond between police and citizens, facilitating the exchange of information in both directions. Further, it fosters a direct channel through which neighbors watch out for each other. We aim to conduct an experiment, inducing take-up in RdV in randomly-selected neighborhoods across the state through a targeted information campaign. The aim is to assess the effect of the program on crime, on the efficiency of police response and on the public perception of safety and police activity.

b) We will conduct a randomized implementation of body-worn cameras (BWC). We expect that the use of BWC technology to monitor policing activity on the ground will lead to increased oversight and improved police-community relations, preventing the escalation of use of force, and reducing the number of citizen complaints against police officers. To this end, we will work in collaboration with PMSC to randomly assign BWCs across police officers and implement randomly-selected shifts where it will be unavailable for all officers within police stations. While the long term
objective is for PMSC to adopt the technology statewide, the current trial is focused on five municipalities, with the possibility of future expansion.

Both Rede de Vizinhos and BWC aim to improve the relationship between the police and the communities they serve a) through better allocation of policing resources made possible through citizens sharing information with dedicated contacts in the police force and b) through improved oversight and monitoring of the police force. We expect that individuals tend to behave better when they have a reasonable expectation of being recorded or observed, either through the use of body-worn cameras or by neighbors who take note of potential suspicious activities. A central question is whether body-worn cameras can encourage citizens to participate in the co-production of security: body cameras can reduce citizen apprehension of excessive use of force by police officers, as interactions are monitored.

Our implementing partner, Polícia Militar de Santa Catarina (PMSC), is responsible for maintaining public safety across the state and is the police force that is deployed at the street-level to act as a crime deterrent. PMSC expects to roll out BWC statewide, and is wants to expand the Rede de Vizinhos network. In fact, the PMSC’s decision on whether to deploy BWC program statewide is contingent on the outcome of this experiment. In case of positive results, PMSC is committed to pursuing an impact evaluation of the statewide launch, providing a unique opportunity to evaluate two statewide programs designed to build trust and improve public security.

2. Motivation

2.1 Background and violence in Brazil

Brazil is one of the most violent countries in the world. According to the UNODC global study on homicides, there were 25.2 murders per 100,000 inhabitants in 2013, one of the highest homicide rates across countries. Similarly, Brazil has among the highest rates of police violence in the world. In 2014 alone, 3,009 civilians were killed by the police in the course of arrest (the equivalent of one person every three hours). That same year, 398 policemen were killed while on duty, more than one officer a day. A 2008 survey of police officers across all Brazilian states showed that (self-reported) police use of force is extremely common, not only in larger cities, but across the country. The survey asked “How often is the
use of force necessary in your work?”, to which 9% of respondents said it was necessary “very often” and 34% “often” (Skogan, 2013).

The excessive use of force of a highly-armed military police force in itself creates an environment of distrust. For instance, in 2016, Brazil and the municipality of São José in Santa Catarina (which will be one of our experiment sites) had a homicide rate attributable to police intervention reaching 1.7 deaths per 100,000 inhabitants. To put this into context, while homicide and crime rates in Honduras are the world's highest, citizen killings by police in Brazil are even higher than in Honduras, where the rate is of 1.2 per 100,000 inhabitants. In South Africa, the rate is 1.1 per 100,000. Police officers are also victims of violence; the number of police officers killed in Brazil in one year is roughly equivalent to the number of police deaths in England in 98 years. In the USA, 41 police officers were killed in the year 2015, compared to 103 in Brazil. Police-community distrust reduces citizen cooperation with law enforcement, engendering an environment where criminal behavior can - and does - thrive.

Santa Catarina state, while having overall lower levels of crime compared to the Brazilian average, is nonetheless significantly affected by crime. In the cities of Biguaçu and São José, which are sites for the randomized BWC evaluation, murder rates are comparable to those found in other Latin American cities. The city of São José reports 16.5 homicides per 100,000 inhabitants, which is comparable to Bogotá in Colombia (with 16.9 homicides per 100,000 inhabitants), as shown on Table 1:

<table>
<thead>
<tr>
<th>Location</th>
<th>Homicide (total)</th>
<th>Homicide Rate / 100,000 people</th>
<th>Homicide by the Military Police (total)</th>
<th>Drug Trafficking Arrest (total)</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaraguá do Sul</td>
<td>6</td>
<td>3.6</td>
<td>0</td>
<td>109</td>
<td>167,300</td>
</tr>
<tr>
<td>São José</td>
<td>39</td>
<td>16.5</td>
<td>4</td>
<td>451</td>
<td>236,029</td>
</tr>
<tr>
<td>Palhoça</td>
<td>19</td>
<td>11.7</td>
<td>0</td>
<td>307</td>
<td>161,395</td>
</tr>
<tr>
<td>Santo Amaro da Imperatriz</td>
<td>1</td>
<td>4.5</td>
<td>0</td>
<td>13</td>
<td>22,266</td>
</tr>
<tr>
<td>Biguaçu</td>
<td>11</td>
<td>16.8</td>
<td>0</td>
<td>107</td>
<td>65,528</td>
</tr>
</tbody>
</table>

Source: Public Safety Secretariat of Santa Catarina, Directorate of Intelligence Information.
What is more, organized crime has expanded significantly in Santa Catarina since 2012. Reports from the police intelligence, prison system and judicial processes make note of the rapid advance of an organized crime faction from the state of São Paulo called Primeiro Comando da Capital (PCC). This has led to increased crime rates in certain locations and territorial disputes as the PCC has reportedly been clashing with another local crime faction called Primeiro Grupo Catarinense (PGC).

There are four organized crime factions operating in Santa Catarina. Among these, the PGC is accused of involvement in widespread attacks on buses, public buildings and security agents happening in 2012, 2013, 2014 and 2016. In 2014 alone, the attacks took place in 13 different cities, a bold manifestation of the power and reach of armed groups across the state. Not surprisingly, a 2016 study that surveyed 1097 people across 20 cities in the state found that 57.1% of Santa Catarina residents feel insecure.

2.2 Background on Rede de Vizinhos

To confront the public safety challenges in Brazil, a number of community policing programs have been implemented since the end of the military government in 1985. The programs have been carried out by the Military Police of the states of Alagoas, Bahia, Goiás, Mato Grosso, Mato Grosso do Sul, Rio de Janeiro, São Paulo, Rio Grande do Sul and the Federal District - but not in our state of study, Santa Catarina. Nonetheless, there has been no rigorous program evaluation of community policing in Brazil: most analyses were limited to comparisons of annual changes in crime indicators based on geographic location, along with qualitative surveys and focus group interviews with program implementation participants. There is a scarcity of research employing randomized evaluations.

The Rede de Vizinhos program in Santa Catarina was created in the first semester of 2016, and unified the best community-policing practices. Adoption of the program is growing, with 1,000 groups presently distributed across the the state of Santa Catarina. This number implies that there are, on average, still fewer than two Rede de Vizinhos groups per municipality statewide - or less than 0.075 groups per 1000 inhabitants. This is low by international standards: in San Diego, USA, for example, there are more than 0.6 neighborhood watch
groups per 1000 residents. Across the USA, it is estimated that between 10-20% of the population are involved in some form of neighborhood watch program.

Through the Rede de Vizinhos program, police officers engage with local communities to set up neighborhood watch groups in two ways: first, through regular (bi-annual, on average) participation in the neighborhood watch groups and second, through regular communication via instant-messaging groups. The aim of the visits is to educate citizens about best practices to prevent crime, how to recognize and report suspicious activities to the police and how to best engage among themselves to reinforce a sense of awareness among the local community.

Upon receiving an application, the police runs background checks on prospective neighborhood watch group members, designates a point of contact with the police, and sets up the online platform (typically through WhatsApp group). An on-site induction meeting is organized by police officials and local residents, which are held regularly thereafter (about every 6 months). The method of allocating police officers to neighborhood watch groups varies across police precincts: some precincts designate one officer full-time to participate in dozens of groups, while in other precincts many officers are assigned one dedicated group and spend only a portion of their time engaging with the group.

The geographic boundaries of a neighborhood watch are determined by the police and local residents. In the words of police officials in charge of Rede de Vizinhos, participants of the group are "required to have a sense of geographical intimacy", a rather flexible definition. Neighborhood watch areas are clearly delineated on digital maps by PMSC. The participation of police precincts in the Rede de Vizinhos program is at discretion of police precinct commanders and is therefore not a uniform guideline applied to the entire state. There is currently no limit to the maximum number of participants, but individual participation requires group members to have a clean criminal record. Participation is not restricted in any other way, such as neighborhood type or whether the community is residential or commercial. As mobile communication via instant messaging groups with a dedicated police contact is a central feature, it is important to note that cell phone network coverage is reliable across most of the state (and, in particular, across the urban centers).

2 Subject to the maximum group size imposed by WhatsApp, currently at 256 individuals.
2.3 Background on Police Use of Body-worn Cameras

There is evidence that use of body-worn cameras (with safeguards) in policing can contribute towards the “de-escalation” of tensions between civilians and law enforcement officials, and moderate interactions between law enforcement officials and community members.

Research conducted in the United Kingdom\(^3\) and United States\(^4\) has found that the presence of a recording device reduces incidents of violence between law enforcement officials and ordinary citizens. Evidence suggests that the mere possibility that your actions are being recorded compels both parties to behave with higher levels of self-control, deterring misconduct and/or criminal conduct from police officers and citizens alike.

In Rialto (California, US) and London (UK), social scientists have undertaken randomized controlled trials to test the performance of body-worn cameras. The experiments have indicated that:

a) The likelihood of force being used by police was roughly 2 times higher when body-worn cameras were not being used;

b) Reported rates of excessive use of force declined by over 60% when police officers were using body-worn cameras;

c) The extent of citizen complaints against police officers declined by more than 80% in cases where body-worn cameras were deployed.\(^5\)

PMSC will be the first Brazilian police department to implement a large scale body-worn camera program. To date, only a few police departments in Brazil have conducted very preliminary and small-scale experiments with body-worn cameras. The Military Police of Bahia has conducted their first operations with body-worn cameras during the 2018 carnival holidays (from February 9 to February 18). The number of cameras was not disclosed.\(^6\) The Military Police in São Paulo has conducted a four-month pilot with 120 cameras from January/2017 to April/2017, and have not disclosed the results of the experience, or whether the technology will be adopted.\(^7\)

\(^3\) See Grossmith et al. (2015)
\(^4\) See Ariel, Farrar and Sutherland (2014)
\(^7\) https://ponte.org/pms-vao-testar-cameras-acopladas-a-farda-durante-patrulhamento-em-sp/
3. Theory

3.1 Rede de Vizinhos

Community policing programs aim to leverage (and build) social capital that can increase both the quantity as well as the quality of information sharing between citizen groups and individuals and encourage citizens to participate in the co-production of public safety. Citizens are also educated on how to recognize suspicious activities in their neighborhoods, how to report them in order to make best use of the group.

Beyond exchange of information, the RdV intervention aims to build a closer relationship between the police and the public, through which trust and cooperation can be built. The component of trust is perceived as particularly salient in Brazil, since cooperation with the police can often carry high private costs such as revenge actions by organized crime groups. Through private communication channels where admissions are highly controlled (for example, through background checks), the police may be able to increase cooperation with the public. The costs of exchanging information with the police are also reduced by the simple fact that citizens are able to report tips and leads from a mobile phone application. By reducing the costs of reporting - both through reduction of sanctions by criminal groups, and the facility of doing so via a mobile phone application -, it could be expected that the quality and quantity of information reaching the police is far increased, allowing them to allocate their efforts in a more efficient manner.

In parallel, the community policing program could have a positive effect on citizens' perception about intentions and responsiveness of the police. By being able to report back to citizens in a timely manner, the police force might, for example, be able to feed back information on why a particular incident has not been attended to. This could arise for instance if dispatch units are occupied with more relevant incidents. This simple act of reporting back prevents the escalation of citizens' perception about police effectiveness.

Beyond the effects on citizens, the program might have an impact on the police officers themselves, for example by increasing the sense of accountability and empathy with the local community. In this way, beyond supplying accurate and timely information, the program might affect the police officers' intentions.
The Rede de Vizinhos program addresses the underlying police-community communication problems through several direct and indirect channels:

a) Lowers communication costs (increasing communication from citizens to police);
b) Citizen training improves the quality of information that is shared;
c) Private communication decreases the chances of revenge acts by gangs;
d) Helps manage expectations about how police will act upon citizen information;
e) Opens the opportunity for the police to request information from the public;
f) Encourages citizen-to-citizen communication about suspicious activities in their neighborhoods.

A theoretical framework of the status quo of police-citizen communications in Santa Catarina would have the following basic ingredients (assuming an exogenous crime generating function):

1) Citizens receive noisy signals about possible crime events;
2) Citizens can choose to report their noisy signal to police at private cost - they will do if the expected (private) cost of a crime event is higher than the cost of sending the signal;
3) Police receives noisy signal(s), aggregate information, and optimally respond (subject to a “dispatch” constraint);
4) Crime and policing outcomes are realized as a function of police activity.

This basic setup highlights that lowering the cost of information sharing may induce citizens to share more information and potentially reduce crime due to its effect on dispatch decisions; however, the setup also highlights a selection margin of the information that gets shared. This could result in information sharing that is noisy and of poor quality, potentially distorted towards crime events that bear the risk of a high private cost (as opposed to public cost).

A community policing group setup such as with the Rede de Vizinhos program can directly improve the quality of the information as participating citizens receive training about how to spot suspicious activity (i.e. how to interpret private signals). Similarly, information
sharing within a group may improve the quality of the information that gets shared with the police as long as information sharing between citizens is of (sufficiently) low cost. At the same time, groups can distribute the cost of sharing information over their group members. This cooperation equilibrium (as opposed to free riding) may be sustained due to the repeated interaction with the threat of social capital being destroyed.

RdV provides an additional mechanism of communication whereby the police explain citizens their actions as opposed to inactions (which could be a result of the police’s information aggregation process or underlying dispatch constraint). Similarly, RdV groups may provide a mechanism for citizens to internalize the (public) cost component of crime, thus increasing the number of information sharing events that have a higher externality cost (as opposed to pure private cost) associated.8

3.2 Body-worn cameras

Corruption and a lack of accountability for actions perpetrated by agents vested with powers provided to them by the state agents contribute to the distrust of public institutions and officials in many developing countries. Excessive use of force and rampant corruption plague public perceptions of the effectiveness of police forces and may indirectly benefit non-state actors such as gangs or vigilante groups, who often step into providing services, security and justice, typically with excessively high indirect social costs.

There is evidence that BWCs can enhance police oversight over police, prevent and reduce corruption, and the number of excessive use of force incidents between police and citizens. Likewise, BWCs can protect officers from false accusations and improve their ability to collect evidence. The body-worn camera arm of the study will leverage the use of this technology. The treatment will leverage information technology to improve the accountability and monitoring of policing activity on the ground. The treatment design will allow in-depth analysis of the underlying mechanisms through which BWCs can improve police-community interactions.

4. Description of Treatments and Experimental Design

8 For more information on the theoretical background, see Section 4 of the meta-study Pre-Analysis Plan, available at http://egap.org/registration/5154
4.1 Rede de Vizinhos

Citizens self-organize and sign up to participate in the Rede de Vizinhos program. As such, it is a necessary condition that prospective participants are aware that the program exists. In fact, PMSC perceives the lack of an information as the main reason for low uptake of RdV groups relative to the program’s potential. We aim to introduce random variation through an information campaign, which will seed group creation and allow us to identify local average treatment effects. This has the benefit of allowing us to identify the effect of the program on the entire state – not just a few select localities.

We implement the information campaign through induction meetings and advertisement of those meetings through Facebook. The police will hold induction meetings where they explain the program to citizens and instigate the formation of new Rede de Vizinhos groups. These meetings may be held in town halls, households, or businesses of volunteering citizens, outside of regular working hours outside of regular working hours. The objective is to hold the meetings as close as possible to citizens' homes to maximize attendance, subject to finding an appropriate location that can host approximately 20 or more citizens. The induction meeting is attended by a police officer who presents Rede de Vizinhos, explains the nature and purpose of the program, and is the first step towards the implementation of the group. At the end of the meeting, a form is circulated to collect citizens' names, IDs and addresses.

Figure 1 is a picture taken at an induction meeting held in Florianópolis in February 2018.

Figure 1: town hall induction meeting in Florianópolis, held on Feb 28th 2018

9 Since groups volunteer for participation in the program, outcomes in localities without Rede de Vizinhos can hardly constitute a valid counterfactual for outcomes for localities where the program was implemented. Our treatment design controls for unobserved factors that underpin participation and group formation.

10 We discussed a number of other randomization protocols in several on-site visits with PMSC. The main concern is that most proposed randomization mechanisms would amount to restricting access to a publicly funded policing intervention, which is not politically tenable. The information campaign is the most viable path towards inducing random variation.
The research team has chosen to publicize induction meetings through social media, which is seen as an ideal medium to stimulate statewide group creation in a cost-effective manner. Figure 2 shows an example of a social media post made during a successful pilot communication campaign conducted by the researchers and PMSC in September 2017 in the municipality of Tubarão. Approximately 30 citizens attended the meeting. Feedback from PMSC suggests that attendance was significantly larger compared to non-advertised events.

Figure 2: Induction meeting campaign on Facebook
Reunião do Rede de Vizinhos - Bairro Oficinas - PMSC
Public · Hosted by Rede de Vizinhos PMSC Tubarão

📅 Tuesday, 26 September 2017 at 19:30–21:00
about 5 months ago

📍 Rua Pedro Peicher de Carvalho, 378, Oficinas, Tubarão - SC, 88702-030, Brasil
Show map

About | Discussion
4.2 Body-worn cameras

The body-worn camera experiment will be conducted in five municipalities in Santa Catarina: Florianópolis, São José, Biguaçu, Jaraguá do Sul, and Tubarão. Although the experiment was originally conceived to be conducted with Android smartphones using the Copcast app, the PMSC has chosen to use a third-party body-worn camera device instead of smartphones. The justification provided by PMSC is that (i) officers will likely have less resistance to adopt the cameras as opposed to smartphones, (ii) the chosen BWC model has a single-button activation and no screen, and therefore is easier to operate during emergencies.

Figure 3: BWC adoption localities

The cost of the selected camera is similar to a smartphone, but the docking stations increase the overall costs. As a result of the increased cost, the number of devices to be used in the experiment has been reduced. That said, the one camera is able to treat a larger number
of police officers (we estimate one camera per treated officer) while one mobile phone was able to treat only one or two officers. We revisit this issue in Subsection 5.2 and on Section 9.

With support from researchers and Igarapé’s software engineers, the PMSC has tested, over a period of 60 days, four cameras and docking station options. Video quality, GPS data accuracy, and network security and compatibility were assessed. The quality of the camera and docking station build were also evaluated. Most importantly, the PMSC conducted field trials where officers experimented with different mechanisms to attach the cameras to uniforms, to ensure that devices are securely fixed to uniforms and do not affect officer’s performance and safety.

The chosen cameras are password-protected and encrypted. The devices have GPS sensors and are water and dust resistant (conforming to IP65 standards). Battery life is of approximately 8h of continuous recording. The cameras must be attached to docking stations to charge batteries. Video files are stored on the docking stations (which will be kept at each precinct), and server (located at the Police Headquarters in Florianópolis).

Each camera has a unique ID. Likewise, officers are assigned unique, anonymous login IDs. The camera and officer’s IDs are associated to each video file, GPS and camera usage data. Therefore, the BWC footage and exact time and location of officers are tracked. Data is automatically uploaded when cameras are attached to the docking stations at the end of officer’s shifts.

Figure 4 - Selected body-worn camera and docking station:
Although the cameras and docking stations operate with their own (third-party) firmware, the PMSC will nonetheless use the Copcast admin software installed on their server to access and manage body-worn camera video footage, officer’s locations, and device usage metadata. The connection between the server and docking stations is encrypted and fully-managed by the PMSC. The data retention period for video files is 60 days. GPS and camera usage metadata are stored indefinitely on the central server.

Figure 5 - Copcast admin dashboard

Authorized police personnel are able to visualize officer’s historical locations on an interactive map, and view video from the password-protected Copcast dashboard using Firefox or Chrome browsers. Camera GPS and usage data files will be sent to researchers on a weekly basis (along with crime incident data), to allow police supervisors and researchers to track compliance to randomization protocols.

While all efforts are being taken to secure system and data integrity, Copcast is licensed as an open source software, and therefore the PMSC holds full responsibility over the management, maintenance, and security of their networks, hardware, and systems.
5. Experimental Design

5.1 Rede de Vizinhos

The randomized intervention will be conducted under the following protocol:

a) We elicit interest of local commanders over the entire state in participating on a campaign to create new and increased participation in existing Rede de Vizinhos groups. This early stage of elicitation of interest takes the form of an email sent out from the PMSC Headquarters to local commanders across the entire state of Santa Catarina. Interest in increasing attendance will likely depend on observed and unobserved local factors, both relative to the neighbourhoods and communities as well as characteristics of the local command.

b) Given the manifestation of interest, we contact the local commanders through phone to explain the implementation of the project. We will adopt a standardized communication to: i) ask local commanders to select focal points, points which would be of their interest to create new Rede de Vizinhos groups. These points should take the form of specific GPS coordinates. We would like them to select the maximum number of focal points under the area of their responsibility. Local commanders can exercise freedom to choose those points and so we expect focal points to suffer from selection based on unobserved factors and that can vary between local commanders; ii) We make clear that we will randomly select approximately half of the focal points to conduct an informational campaign centered around them, and remaining 50% will not receive an informational campaign in six months; iii) we will ask local commanders to hold induction meetings, as we also detail below, only in the points randomly selected by the research team; and, finally, iv) local commanders commit to exchanging information, coordinating actions and keeping the PMSC central records of Rede de Vizinhos groups up-to-date. Our goal is to record at least 200 focal points (in Section 10, we discuss the risk and mitigation actions if this number of focal points is not achieved). The focal point roster forms the basis of the randomization.

c) We randomize from within the roster of focal points, stratifying by local command areas. This ensures that exactly half of the focal points in local command areas are
treated, and the rest are control. This also provides maximum variation at the local level. Given the selection of focal points, as described above, our purpose is to analyze variation at the local command level.

d) For the selected focal points, the police sets a date and time for an induction meeting. The induction meeting is advertised by us using Facebook with the purpose of maximizing attendance and participation. We set and advertise events, which also allows us to monitor and obtain data on the reach, audience, and confirmation of attendance. We spend US$ 10.00 per meeting per day, for seven days of advertisement on the platform.

Treatment to the information campaign will be administered within a tight 1 km band of the focal points. After discussing with Facebook, we can confirm that Facebook ad targeting allows us for most locations to define treatment around a centroid with a tight radius of 1 km as catchment area. We, however, increase the 1km catchment area if the target population contains less than 10,000 inhabitants. To increase the effectiveness of the information campaign (and to help solve the underlying coordination problem among neighborhood residents), we will create a dedicated Facebook event for each of our treatment and control focal points. The Facebook pages as well as the targeted ad messages will have a common layout.

To contain spillovers, ad targeting allows us to restrict the population that the ads are shown to only include the resident population within the circular neighborhood around the centroid. Facebook uses a host of information to infer the likely place of residence, using geo-tagged images and geo-references obtained from mobile usage of the app, resulting in accurate estimates of the proximate home location.

Number of Treatment and Control Units

The initial request for local commanders to supply candidate points to organize community meetings resulted in a total list of 206 candidate points across 25 municipalities. Treatment assignment for the encouragement design was such that 50% of the locations within a municipality would receive the treatment. As a result, a total of 101 candidate points were randomly selected using the script shared.
Out of the 101 proposed locations that were assigned to receive treatment, 45 dropped out from the study. The vast majority of the locations dropping out (37 of the 45 locations) were lost due to 10 municipalities dropping from the study in full. The full dropping of municipalities means that our T/C figures are reconfigured to include 125 locations across 15 municipalities, out of which 64 were assigned to receive the treatment.

The following municipalities dropped from the study

- Brusque (6 points, 3 T and 3 C)
- Camboriu (3 points, 2 T and 1C)
- Galvao (4 points, 2T and 2C)
- Itajaí (10 points, 5T and 5C)
- Laguna (20 points, 10 T and 10 C)
- Ponte Serrada dropped from the study (8 points, 4T and 4C)
- Palhoça (5 points, 2T and 3C)
- Santiago do Sul (2 points, 1T and 1C)
- São Domingos (4 points, 2T and 2C)
- Xaxim (11 points, 6T and 5 C)

This contributed to the loss of 37 points. The remaining 9 lost events are due to:

- Caçador municipality only holding 2 events (instead of the suggested 5), hence losing 3 T units
- Chapecó municipality held meetings prior to the official launch of FB campaigns (affecting 5 T units)
- 4218707-10 Tubarão – event was canceled.

Nevertheless, the 56 Facebook campaigns achieved a combined reach of 1.150 million Facebook users, generating 1.590 million impressions and a combined total of 4,768 event responses with recorded attendance in excess of 1075 community members.

The full dropping of municipalities means that our T/C figures are reconfigured to include 125 locations across 15 municipalities, out of which 64 were assigned to receive the treatment with treatment delivery for 56 out of 64 locations originally assigned the treatment. Hence the non-compliance to organize actual events that we could advertise was mostly driven by whole municipalities dropping from the study, and not due to selective non-holding of scheduled meetings.
5.2 Body-worn Cameras

We will implement randomization design with two layers:

a) Randomize police officers into treatment at the beginning of the experiment. We stratified on police unit, activity type (patrol versus reactive forces), gender, above/below median rank indicator and above/below median level of administrative sanctions, in this order. We merged stratification bins with one or two police officers into the most similar stratification bin, following the ordering above. Treatment officers will wear BWC during their shifts during the experiment period. Control officers will be required to not to use a BWC and are, in any case, extremely unlikely to be able to do so. To preserve design integrity, randomization will be conducted by the researchers with no influence from the implementing partner.

b) Randomize shifts in which BWCs will not be available for all officers in a police stations (“blackout periods”). They will be further required to leave the dedicated BWC mobile phones at the police station during these shifts. In this way, we ensure that we have shifts serving as pure controls as treatment is not administered to any officer during those periods, either by directly using BWCs or by patrolling with non-functional BWCs.
Table 2 summarizes the randomization scheme:

<table>
<thead>
<tr>
<th>Officer selection</th>
<th>Shift selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Treatment officers using BWC</td>
</tr>
<tr>
<td>Control</td>
<td>Black-out</td>
</tr>
<tr>
<td></td>
<td>Treatment officers denied access to BWC</td>
</tr>
<tr>
<td></td>
<td>Control officers, possibly patrolling with officers using BWCs</td>
</tr>
<tr>
<td></td>
<td>Control officers not patrolling with officers using BWCs (pure control)</td>
</tr>
</tbody>
</table>

We discussed other randomization options with the implementing partner. For instance, we suggested the randomization unit could be at the officer-shift level. PMSC considered this option unsuitable to their operations and suggested that treatment compliance could be maximized keeping the randomization protocol as simple as possible, accountable, and clear from treated officers’ point of view and consistent with their internal chain of command. We are able to both to deliver a simple implementation protocol which allows us to identify the following effects of key effects of interest:

a) **Between-individual comparison**: what is the effect of body-worn cameras on police use of force, behavior, efficiency and citizen complaints in particular shifts?

 Identification strategy: compare treatment officers in normal functionality periods against control officers in black-out periods.

b) **Within-individual comparison**: do treatment officers behave differently if they used BWC in the past, even if they are not using the camera in a specific black out shift?

 Identification strategy: compare treatment officers in normal functionality periods against treatment officers in black-out periods, before and after implementation. This
exploits the within-officer variation in BWC treatment due to the random black-out periods.

c) **Within dispatched group spillover effects**: how do BWCs impact dispatch group and team dynamics? In particular, can we observe any effect on control police officers who were allocated to a dispatch group in which at least one officer was treated?

Identification strategy: compare control officers not wearing BWCs and patrolling with treatment officers in normal functionality periods against control officers patrolling with treatment officers during black-out periods.

In the past months PMSC has developed the standard police protocol for camera use, which is included in Appendix I. Because of the several potential legal ramifications of recording police activities involving civilians. The protocol is of the mandated-use kind: officers must turn cameras on whenever there is interaction (or reasonable expectation) of interaction with a citizen, except in emergency scenarios where there isn't sufficient time to turn BWC on.

Density of Treatment and Equipment Allocation

In our experiment, as described above, we introduce variation at the officer level. Officers are then selected into shifts; within a shift, officers are allocated into dispatch units, typically composed of 2 or 3 police officers. We then opt to introduce a sparse treatment where less than half of the officers in the precincts wear a body camera. In this way, we generate maximum variation of BWC usage at the dispatch level. To tune the allocation of cameras, we use historical dispatch data to simulate the frequency of the three intensities of camera allocation. More specifically, in Figure 6 we show the simulated frequency of dispatches by number of treated police officers, based on the month prior to the start of the experiment. We simulated the cases for $nT=100$, 150 and 200 treated officers out of the total number of 445. The dashed lines represent two units of standard deviation, calculated across 1,000 simulation runs.
From the simulations presented in Figure 6, we opted to treated 150 police officers, so approximately a one-in-three treatment. Table 3 shows the number of officers, treated officers, cameras and docking stations allocated by police precinct.

Table 3: equipment allocation by police precincts
6. Data and Outcome Measurement Strategy

6.1 Administrative data

Note that to protect the identity of police officers, a specific ID number will be assigned to each participating officer for the purpose of the experiment.

- **Rede de Vizinhos-specific data:** detailed geo-referenced coverage, including group creation date, number of participants and anonymous identity, identification of the designated police officer; contents and summary statistics of anonymized message exchanges; logs of prevention measures associated with Rede de Vizinhos communication and non-emergency calls attended or any other activity related to the program. Further, for treated localities we collect attendance data on the individual meetings, together with information on the reach of the individual Facebook campaigns.

- **Dispatch data:** Database of geo-referenced incidents, with full description, officers that attended the site, police unit responsible, type of event (fulfillment of judicial mandates, emergency response), type of infraction if present (public disorder, murder, robbery, larceny, assault, aggravated assault, sexual assault, drug and weapon possession, traffic incident), recorded use of force (physical altercation, detailed information on use of non-lethal and lethal weapons), incarceration; PMSC uses a smartphone app to collect event level data with exact geo-references collected by the dispatched police officers on site. GPS logs of police vehicles, obtained from the PMSC mobile app, which consists of a mobile platform in which police officers register their activities in the field.
6.2 Data from Independent Police Watchdogs

a) **Data from the Corregedoria da Polícia Militar**, an independent administrative body within the police department, responsible for investigating civilian complaints (civilians are able to identify officers’ names on the ground): event, time, police officer identification, description, type of complaint, administrative disciplinary actions, disaggregated by severity.

6.3 Survey data and survey design

We apply the survey questionnaire elaborated in collaboration with other teams in the EGAP Metaketa IV funding round. This questionnaire elicits: (i) demographic characteristics; (ii) digital literacy and penetration of internet and mobile devices; (iii) perceptions of the police and cooperation norms; (iv) victimization; (v) perceptions about safety and security; (vi) trust and legitimacy of government, institutions and community; (vii) exposure to treatment (endline survey only). The full survey instrument is registered in the Pre-Analysis Plan of the planned meta-study of the EGAP Metaketa IV.\(^{11}\) Obtaining survey measure of crime victimization will also allow us to compare results with administrative data. For example, it is possible that Rede de Vizinhas encourage crime reporting but reduces crime incidence and perception of crime and violence.\(^{12}\)

To ensure consistent implementation of the survey across treatment and control groups, we proceed as follows:

\(^{11}\) Available at http://egap.org/registration/5154

\(^{12}\) The final questionnaire, including its translation to Portuguese from the common set of questions agreed by EGAP Metaketa IV’s participants, in currently in pilot stage and will be appended to this pre-analysis plan when this stage is completed.
a) For each focal point, we draw 300m radiuses and attempt to interview at most 68 households for focal points the treatment group and 34 in the control group. We oversample from the treatment group to increase the likelihood of capturing households that eventually will participate in Rede de Vizinhos groups.

b) Within the radiuses, the households are uniformly spatially selected, meaning that within a street, the enumerators interview one household is surveyed, and skip the next x households, where x is defined in advance by the survey coordinator such that the desired number of interviews is achieved at each focal point.

c) Whenever there aren't sufficient number of households in treatment or control areas, all households are interviewed. We then expand the radius to 350m or 400m. If yet there isn't a sufficient number of households, no further interviews will be conducted at that focal point.

7. Hypotheses

7.1 Rede de Vizinhos

The tested hypotheses are in line with the Pre-Analysis Plan for the meta-study of the EGAP Metaketa IV round, reproduced here for convenience. The outcome measures, tests and alternative hypotheses in this individual study are also implemented as described in meta-study's PAP. For more details, refer to subsections 4.1, 4.1.1 and section 5 therein.13

Primary Outcome Family 1: Security of Life and Property

1a. Negative effect on incidence of crime

1b. Positive effect on perceptions of safety (personal, land, and possessions)

Primary Outcome Family 2: Citizen Perceptions of the Police

2. Positive effect on citizen perceptions of police

Primary Outcome Family 3: Police Perceptions of and Behaviors Toward Citizens

13 Available at http://egap.org/registration/5154
3a. Positive effect on perceptions of police empathy, accountability, and abuse and corruption concerns
3b. Negative effect reporting of police abuse and bribery

Primary Outcome Family 4: Behavioral Cooperation of Citizens with the Police
4a. Positive effect on reporting of crime victimization
4b. Positive effect on reporting of crime prevention tips
4c. Positive effect on reporting of victimization by the police

Mechanism Family 1: Perceived Costs to Citizens Cooperating with the Police
M1a. Positive effect on beliefs about police intentions
M1b. Positive effect on knowledge of criminal justice system
M1c. Positive effect on norms of citizens cooperation with police

Mechanism Family 2: Perceived Returns to Citizens Cooperating with the Police
M2a. Positive effect on beliefs about police capacity
M2b. Positive effect on perceptions of responsiveness to citizen feedback

Secondary Outcome Family 1: Trust in the State
S1. Positive effect on trust in the state

Secondary Outcome Family 2: Communal Trust
S2. Positive effect on communal trust

Compliance with Treatment: Citizen Interactions with Police
C. Positive effect on rate of citizen interactions with police

7.2 Body-worn Cameras

The hypotheses concerning the body-worn cameras relate to the reduction of the number of negative interactions between officers and citizens as measures by events in which force was employed or from that even a civilian filed a complaint against a police officer. We also
explore spillover effects, both to officers in the same dispatch unit and attending the same event where at least one officer was wearing a camera.

Table 4: Hypotheses concerning the Body-worn Camera program

<table>
<thead>
<tr>
<th>Hypothesis ID</th>
<th>Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWC_H1a</td>
<td>BWC reduces the use of force incidents by: a) police officers wearing a camera, b) police officers in the same dispatch group as those wearing a camera (within-dispatch unit spillover), c) police officers attending the same event where at least one police officer was wearing a camera (within-event spillover)</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H1b</td>
<td>BWC reduces the use of force incidents by: a) police officers wearing a camera, b) police officers in the same dispatch group as those wearing a camera (within-dispatch unit spillover), c) police officers attending the same event where at least one police officer was wearing a camera (within-event spillover)</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H1c</td>
<td>BWC reduces the use of force incidents by: a) police officers wearing a camera, b) police officers in the same dispatch group as those wearing a camera (within-dispatch unit spillover), c) police officers attending the same event where at least one police officer was wearing a camera (within-event spillover)</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H2a</td>
<td>BWC reduces civilian complaints against police officers: a) wearing a camera, b) in the same dispatch unit as those wearing a camera, c) in the same event where at least one police officer had a camera</td>
<td>Civilian complaints data</td>
</tr>
<tr>
<td>BWC_H2b</td>
<td>BWC reduces civilian complaints against police officers: a) wearing a camera, b) in the same dispatch unit as those wearing a camera, c) in the same event where at least one police officer had a camera</td>
<td>Civilian complaints data</td>
</tr>
<tr>
<td>BWC_H2c</td>
<td>BWC reduces civilian complaints against police officers: a) wearing a camera, b) in the same dispatch unit as those wearing a camera, c) in the same event where at least one police officer had a camera</td>
<td>Civilian complaints data</td>
</tr>
<tr>
<td>BWC_H3a</td>
<td>BWC reduces use of force incidents by police officers that in the past had: a) worn a camera, b) patrolled with an officer that was wearing a camera, c) attended an event where one officer was wearing a camera</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H3b</td>
<td>BWC reduces use of force incidents by police officers that in the past had: a) worn a camera, b) patrolled with an officer that was wearing a camera, c) attended an event where one officer was wearing a camera</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H3c</td>
<td>BWC reduces use of force incidents by police officers that in the past had: a) worn a camera, b) patrolled with an officer that was wearing a camera, c) attended an event where one officer was wearing a camera</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H4a</td>
<td>BWC reduced dispatch time if officer was a) wearing a camera, b) patrolling with an officer that was wearing a camera</td>
<td>Dispatch data</td>
</tr>
<tr>
<td>BWC_H4b</td>
<td>BWC reduced dispatch time if officer was a) wearing a camera, b) patrolling with an officer that was wearing a camera</td>
<td>Dispatch data</td>
</tr>
</tbody>
</table>

8. Analysis

8.1 Rede de Vizinhos

The RdV common treatment arm intervention is an encouragement design, allowing us to estimate local treatment effects using an instrumental variable specification where we instrument the group creation dummy G with the dummy for the randomized treatment status of the group (T). This specification is also reproduced in the Pre-Analysis Plan of the meta-study.
Specifically we estimate a two stage least squares regression of the following form

\[y_{i,c,t} = \beta_0 + \beta_1 G_i + \varepsilon_{i,c,t} \]

where the group formation variable in neighborhood \(i \), \(G_i \) is instrumented using the randomized treatment assignment \(T_i \). Since this purely cross-sectional regression may be producing noisy estimates, in order to increase the precision, we further add a vector of controls \(X \).

\[y_{i,c,t} = \beta_0 + \beta_1 G_i + \gamma X_i + \varepsilon_{i,c,t} \]

Further, since we have, for the administrative data in particular, high frequency outcome data, we also propose to estimate a difference in difference

\[y_{i,c,t} = \alpha_i + \nu_t + \beta T_i + \gamma X_{i,c} + \varepsilon_{i,c,t} \]

In addition, we propose to define a measure of treatment intensity by measuring the built-up area \(I_i \) around a proposed meeting location that is covered with a neighborhood watch group. The estimating specification is the same as the above difference-in-difference specification, except that now, we use the baseline group presence and instrument whether treatment induced an expansion in the area covered by Rede de Vizinhos groups around a treatment location.

8.2 Body-worn cameras

For the body-worn cameras, we interpret the interaction between a police unit and the citizen as the unit of analysis. We propose to estimate the following model

\[y_{e,i,t} = \alpha_i + \nu_t + \beta T_{it} + \varepsilon_{e,i,t} \]

where \(y_{e,i,t} \) are the outcomes of the event \(e \), assigned to officer \(i \), at time \(t \). The specification contains officer-level fixed effects \(\alpha_i \), time effects \(\nu_t \) and the treatment assignment variable \(T_{it} \) which is equal to one if the at least one treated officer, not in blackout periods, attended the event.
9. Simulations and Power

9.1 Rede de Vizinhos

To take into account the specific nature of the Rede de Vizinhos program, we conduct full-scale power simulations given all information available at this moment.

To construct the baseline status of the program, we collected the population of census tracts and constructed neighborhood polygons. We then calculated the share of population living within 1km radius of their centroids. We then distributed existing Rede de Vizinhos groups uniformly through the population, rounding the effect to the nearest integer. This is consistent with the interpretation that the number of groups currently active is a linear function of population in that municipality. We also collected statewide crime statistics. Again, we do not presently have access to the breakdown per municipality, and thus we also assume that distribution of crime is a linear function of the population.

The local information campaign has a positive effect ic on the number groups created per thousand inhabitants in the selected neighborhoods. That is, if $ic=1$, there will be, on average, one new Rede de Vizinhos group created as a consequence of the local information campaign per 1,000 inhabitants. As a result, targeting denser neighborhoods will result in a greater number of groups created by the information campaign. This number is also rounded to the nearest integer. We then randomly select half of the neighborhoods to receive the information campaign targeted at their 1km-radius centroids.

In the second stage, we formulate hypotheses on how crime is affected by Rede de Vizinhos. We assume that creation of group prevents r crimes per year in its operating area, which is reflected in the municipality-wide statistics. We add a Gaussian error term, with zero mean and variance equal to the municipality population (in thousands) times a factor which is initially set to $sigma^2=10$. Negative simulated crime instances are set to zero (which implicitly reduces power for less-frequent types of crimes).

We then estimate the instrumental-variable regression of crime on population and the number of Rede de Vizinhos groups active in the municipality, instrumented by the treatment/control allocation dummy variable. We collect the frequency of times that the null
hypothesis "zero Rede de Vizinhos effect" is rejected; and plot for several combinations of parameters. Tests are held at the 95% significance level.

We then conduct several simulated exercises. We first plot the power of the test for Rede de Vizinhos effect varying between $r=-5$ and $r=0$, and repeat the exercise for four values of the effectiveness of the information campaign: $ic={1,2,3,4}$. Robbery and larceny amounted to 86,878 incidents in 2016. Around the parameters described above, power is above 80% for all specifications, except if the information campaign is not very effective. Naturally, there is a trade-off between the information campaign effectiveness and Rede de Vizinho effect: the less effective the former is, the larger the true effects of the program need to be in order to be detectable with high probability.

Figures 6 and 7: Power as a function of Rede de Vizinhos effect, admin data, $\sigma^2=10$

Robbery and larceny

Homicides

Similar conclusions can be reached in simulations with the homicides baseline (728 incidents in 2016), although power is reduced slightly due to the fact that crime has a natural lower bound at zero. We simulated for drug trafficking incidents (5,775 cases in 2016) which are not reported here in the interest of space and given that conclusions remain largely unchanged. Note that these estimates are likely to be lower bounds: while our treatment (the

14 In all simulations, there are 100 iterations for each combination of parameters.
information campaign) will be varied at the neighborhood level, most of our outcome data will be collected at a finer spatial detail, which could help to increase statistical power.

We consider how power is affected by varying the variance of the errors σ^2. To select a value that reflects reality, and that is informative of the exercise above, we generate data following the process described earlier and momentarily do not consider the Rede de Vizinhos effect. We then sample values for crimes at the municipality level and aggregate over the state. Repeating this exercise 1,000 times, we recover the distribution of the simulated statewide statistic.

The distribution of state-level statistic should then reflect the distribution observed in practice; to anchor those parameters, we take information from the PMSC's Strategic Plan, where specific goals for each crime category are specified. From these reports, we observe that combined robbery and larceny was considered excellent if lower than 54,763 incidents, and poor if larger than 74,313 incidents. We will set σ^2 such that the distribution of state crime is such that the average crime plus 2 standard deviations is approximately 74,313; minus 2 standard deviations is 54,763. In our simulations, this value is reached at around $\sigma^2=35$. Around that parameter value, we would need a Rede de Vizinhos effect of approximately 1.75 crimes reduced per year in its coverage area to cross the usual threshold 80% of power. We next show the power curves for $\sigma^2=\{10,25,35,50\}$.

\[\text{http://www.pm.sc.gov.br/fmanager/pmsc/upload/master/PlanoEstrategico.pdf}\]

\[\text{The plan stipulates an excellent outcome if there are less than 161.90 robberies and 560.92 larcenies per 100 thousand inhabitants. Thus (170.42+623.25)*69= 54,763, since Santa Catarina state has population of 6.9 million.}\]
Figure 8: Power as a function of Rede de Vizinhos effect, admin data, robbery and larceny, $ic=2.5$

9.2 Body-worn cameras

We obtained historical dispatch, roster and use of force data by PMSC from January 1st to December 31st 2017. This allows us to fine-tune our power simulations based on real inputs. Given the simulations conducted in Section 5.2, we consider the treating one in five police officers.

For each simulation run, we randomly select the officers that were treated and map all the events that would have been attended by treated officers. We then consider the entire event as treated, irrespective of the presence of other control officers since we would expect that they would have also have changed their behavior due to the presence of the camera. The unit of analysis in this exercise is therefore the event.

We then create a variable which records a negative interaction between citizens and police officers. We define the dummy variable as one if the event had any use of force (lethal or non-lethal), recorded aggression against the police officer, or which resulted in handcuffed citizens. In the six-months from January 1st and July 1st 2017, there were 28,395 events only in the five municipalities covered above, and 1,225 of which resulted in a "bad interaction" as defined above.
We suppose that "negative interaction" events are turned into good interactions when cameras are being used with probability r. We explore the power for r in the region between 0 and 50%, for three implementation periods: 3, 6 and 9 months. We then run a simple regression of negative interaction dummy on the treated event and evaluate the frequency that the null hypothesis of absence of camera effect is rejected. In Figure 3, we see that power is above 80% if r is greater than 15% for the six-month implementation window, and slightly lower for the longer 9-month implementation period.

Figure 9: Power as a function of the BWC effect and intervention period

References

Appendix I. Standard Operational Procedure for Body-Worn Cameras (in portuguese)

<table>
<thead>
<tr>
<th>MATERIAL NECESSÁRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fardamento, armamento e equipamento (POP 501);</td>
</tr>
<tr>
<td>2. Camera Policial Individual “Body-worn Cam”.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNDAMENTAÇÃO LEGAL E DOSTRINÁRIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEGISLAÇÃO/DOGUSTRINA</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Manual de Técnicas de Polícia Ostensiva - PMSC</td>
</tr>
<tr>
<td>Regulamento de Uniformes da Polícia Militar</td>
</tr>
</tbody>
</table>
1. A Câmera Policial Individual (body-worn cameras) é equipamento policial de uso obrigatório quando disponibilizada para o policial militar de serviço e tem como objetivo registrar as interações entre policial militar e cidadão nos atendimentos de ocorrências policiais, abordagens policiais, operações e eventos.

2. As Câmeras Policiais Individuais, bem como os equipamentos acessórios (cabeçotes, dock station e computadores) ficam acondicionadas nas reservas de armamento ou em local específico designado na OPM com acesso restrito. Os policiais Militares designados para a operação administrativa dos equipamentos serão responsáveis por:
 a. Acondicionar os equipamentos;
 b. Manter diariamente cabos, baterias e acessórios;
 c. Proceder protocolo para download de dados;
 d. Entregar aos policiais militares designados para uso na assunção do serviço mediante protocolo;
 e. Receber o equipamento ao final do turno de serviço de cada policial militar designado mediante protocolo.

3. O Policial Militar que receber a Câmera Policial Individual deverá na assunção do serviço:
 Registrar no PMSC MOBILE, na tela específica a matrícula do integrante da Guarnição que estará usando a câmera e o número de série.

4. O policial militar designado para utilizar a Câmera Policial Individual, no seu respectivo turno de serviço, deverá portar o equipamento em seu colete balístico na altura do ombro da mão finca ao lado contrário ao utilizado o coldre, e durante o serviço deverá acionar o modo gravação quando houver qualquer interação direta com cidadão:
 a. Nas interações espontâneas entre o policial e o cidadão, não se faz necessário a acionamento da câmera policial, entretanto caso a interação mostrar indícios de desdobramentos mais graves, o policial deverá acionar o modo gravação da câmera de maneira preventiva, devendo informar o cidadão que estará sendo gravado:
b. Nos atendimentos de Ocorrência Policial:

I. Acionar o modo gravação do equipamento no momento de deslocamento (J9) para a ocorrência policial;

II. Deixar o equipamento em modo gravação durante todo o atendimento da ocorrência;

III. Iniciar o atendimento da ocorrência informando aos presentes que a ocorrência está sendo gravada:

"Senhor (a), esta ocorrência está sendo gravada por câmera policial, conforme protocolo da Polícia Militar.

i. Se tal procedimento na ocorrência representar risco indevido ao policial, gerar risco de vida a outrem ou for inadequado dadas as circunstâncias, por demandar resposta imediata do policial militar (uso da força, prisão de agente) não sendo possível a verbalização inicial, após a contenção da ocorrência, deverá ser informado as partes que a ocorrência está sendo gravada.

IV. Após finalização da ocorrência, incluindo a lavratura de procedimentos e dispensa das partes (cessando qualquer interação com cidadão), adentrar na viatura, iniciar deslocamento do local da ocorrência e interromper o modo gravação.

V. Se o atendimento da ocorrência policial resultar em prisão em flagrante (BOPA) e consequente condução de pessoas em viatura policial, manter o modo gravação acionado até o repasse da custódia do preso para o órgão responsável.

c. Nas abordagens Policiais:

I. Acionar o modo gravação quando da tomada de decisão para a abordagem mediante fundada suspeita, concomitante ao emprego do Ciclo OODA (Observar – Orientar – Decidir - Agir), POP 403 e POP 404, e informar o cidadão da gravação da abordagem quando:
i. Nas ocorrências Nível I, assim que iniciar a verbalização:

"Senhor (a), esta abordagem está sendo gravada por câmera policial, conforme protocolo da Polícia Militar."

ii. Nas ocorrências Nível II, assim que iniciar a verbalização. Não sendo possível a verbalização por necessidade de contenção do ocorrido, informar no momento em que o(s) suspeito(s) estiverem contidos e em posição de revista.

1) Ocorrência com verbalização no momento da abordagem:

"Após a verbalização padrão para abordagem nível II (POP nº...), ressaltar:

"Senhor (a), esta ocorrência está sendo gravada por câmera policial, conforme protocolo da Polícia Militar."

2) Não sendo possível a verbalização do informe da gravação no início da abordagem, fazer assim que possível de maneira explicativa:

"Senhor (a), todo procedimento de abordagem foi gravado por câmera policial, e continuará sendo, conforme protocolo da Polícia Militar."

3) Durante a busca pessoal se houver verbalização com o cidadão, deverá ser feita e alto e bom tom, a fim de que fique registrada na filmagem.

4) Após os procedimentos de busca pessoal, caso não seja confirmada a fundada suspeita, informar ao cidadão abordado os motivos da abordagem (POP 404) e reiterar que a abordagem estava sendo gravada por câmeras.

5) Encerrar o modo gravação quando finalizada a abordagem, após afastar-se com segurança – POP 403 e POP 404.

6) Se o procedimento de abordagem resultar em prisão em flagrante (BOPA), obrigatoriamente deverá ser dada voz de prisão, com consequente condução em viatura policial, e o modo gravação deverá ser mantido até o repasse da custódia do preso para o outro órgão.

Voz de Prisão: “Eu sou ...(nome e graduação) do ... Batalhão... e o Senhor (a) está preso pelo crime (descrever a infração penal/mandado de prisão).“
7) No caso de apreensão de adolescente:

"Eu sou ... (nome e graduação), e o senhor (a) está sendo apreendido pelo ato infracional (descrever o ato infracional/mandado de prisão)."

8) No caso de Retenção de Criança:

Efetuar procedimento conforme POP 304 mantendo a câmera ligada até o repasse da custódia para o Conselho Tutelar.

iii. Nas ocorrências Nível III, assim que iniciar a verbalização. Não sendo possível a verbalização por necessidade de contenção da ocorrência, informar que quando o preso estiver algemado.

Conforme verbalização do item ii, I, e, 4.

I. Durante a busca pessoal, se houver verbalização com o cidadão, deverá ser feita em alto e bom tom, a fim de que fique registrada na filmagem.

II. Se o procedimento policial de abordagem requerer uma intervenção rápida do policial, não sendo possível iniciar a verbalização, o acionamento do modo gravação deverá ser feito após a contenção da situação.

III. Se o procedimento policial de abordagem requerer uma intervenção rápida com uso direto de força por parte do policial, impedindo as etapas do Ciclo OODA, a verbalização e impossibilitando o acionamento do modo gravação, deverá o policial logo que estabilizada a situação, acionar o modo gravação.

d. Nas Operações Policiais programadas:

I. Em operações de trânsito, o comandante da operação deverá selecionar pelo menos um policial militar para manter o modo gravação acionado de maneira permanente. No caso de interações subsequentes na operação, os demais policiais deverão proceder conforme o item 4.

II. Nas Operações Varredura e Pente fino, Patrulha e Cerco, durante todo o andamento da operação, todos os policiais designados deverão manter as câmeras em modo gravação até o término da mesma.
PROCEDIMENTO OPERACIONAL PADRÃO
UTILIZAÇÃO DE CÂMERA POLICIAL INDIVIDUAL

Estabelecido em 20/11/2017 Atualizado em 15/01/2018 Execução Guarnição PM

POP nº

...1

e. Em policiamento de eventos:

I. Em policiamento de praças desportivas, o comandante do policiamento deverá selecionar os pontos que requerem maior atenção de policiamento e manter os policiais militares com o modo gravação acionado de maneira permanente. Pelo menos um policial em cada ponto (ex: Entrada do estádio, Divisão de torcidas e campo). No caso de interações subsequentes na operação, os demais policiais deverão proceder conforme o item 4.

II. Em Shows e demais eventos, o comandante do policiamento deverá selecionar os pontos sensíveis (ex: corredores de emergência, paleo, entradas e controles de acesso) que requerem maior atenção do policiamento e manter os policiais militares com o modo gravação acionado de maneira permanente. No caso de interações subsequentes na operação, os demais policiais deverão proceder conforme o item 4.

f. Em policiamento de manifestações:

I. Todos os policiais militares designados com câmeras corporais deverão manter o modo gravação acionado até o término do evento, findando a gravação quando em retorno a base.

d. Reintegração de posse e apoio a outros órgãos

I. Todos os policiais militares designados com câmeras corporais deverão manter o modo gravação acionado até o término da operação, findando a gravação quando em retorno a base.

5. A produção de imagens pela Câmera Policial Individual, ou seja, colocar a câmera em modo gravação, ainda que de serviço e portando o equipamento, será proibida:

a. Quando não estiver abarcada nos protocolos do item 4;

b. Durante o serviço quando interagindo somente com guarnição policial militar;

c. Em procedimentos administrativos de qualquer natureza em sede de OPM;

d. Em repartições públicas ou privadas de qualquer natureza (hospitais, agências bancárias, prefeituras municipais), salvo as situações do item 4.

6. O porte e uso da câmera no colete/farda ficam proibidos:

a. Em audiências e/ou depoimentos ao poder judiciário, ministério público, delegacia de
I. Quando em serviço, o policial militar que se encontrar nas situações acima deverá deixar o equipamento na viatura policial ou devolver à reserva de armamento.

ATIVIDADES CRÍTICAS

1. Ationar modo gravação sempre quando houver interação com cidadão;
2. Manter o equilíbrio face à diversidade de situações a serem enfrentadas;
3. Registrar a busca pessoal com atenção e cuidado aos pertences do cidadão abordado, procurando descrever o que encontrar na bolsa, carteira, mochila, etc., desde que tal procedimento não acarrete risco à guarnição ou à ação policial.
4. Ter o conhecimento técnico sobre os equipamentos a serem operados.

ERROS A SEREM EVITADOS

1. Deixar de ationar o modo gravação quando das interações previstas no protocolo;
2. Deixar de verbalizar com o cidadão quanto à gravação das imagens;
3. Deixar de verbalizar voz de prisão, quando ver prisão em flagrante;
4. Utilizar verbalização não adequada para com o cidadão, fora dos protocolos operacionais da PMSC;
5. Não verificar a assunção do serviço as boas condições para uso da câmera (bateria e acessórios em condições de uso);
6. Acionar o modo gravação não situações não permitidas.