
Difficulty of the Conventional Approach

Lack of invariance to the baseline condition

Inference depends on the choice of baseline condition

3× 2 example:

Treatment A ∈ {a0, a1, a2} and Treatment B ∈ {b0, b1, b2}
Regression model with the baseline condition (a0, b0):

E(Y | A,B) = 1 + a∗1 + a∗2 + b∗2 + a∗1b
∗
2 + 2a∗2b

∗
2 + 3a∗2b

∗
1

Interaction effect for (a2, b2) > Interaction effect for (a1, b2)

Another equivalent model with the baseline condition (a0, b1):

E(Y | A,B) = 1 + a∗1 + 4a∗2 + b∗2 + a∗1b
∗
2−a∗2b∗2 − 3a∗2b

∗
0

Interaction effect for (a2, b2) < Interaction effect for (a1, b2)
Interaction effect for (a2, b1) is zero under the second model
All interaction effects with at least one baseline value are zero
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The Contributions of the Paper

1 Standard treatment interaction effects suffer from the lack of order
and interval invariance to the choice of baseline condition

2 Propose the marginal treatment interaction effect that is invariant

3 Derive the identification condition and estimation strategy for this
new quantity

4 Generalize these results to the K -way causal interaction

5 Illustrate the methods with the immigration survey experiment
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Two-way Causal Interaction

Two factorial treatments:

A ∈ A = {a0, a1, . . . , aDA−1}
B ∈ B = {b0, b1, . . . , bDB−1}

Assumption: Full factorial design
1 Randomization of treatment assignment

{Y (a`, bm)}a`∈A,bm∈B ⊥⊥ {A,B}

2 Non-zero probability for all treatment combination

Pr(A = a`,B = bm) > 0 for all a` ∈ A and bm ∈ B

Fractional factorial design not allowed
1 Use a small non-zero assignment probability
2 Focus on a subsample
3 Combine treatments
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