Causal Interaction

Kosuke Imai

Princeton University

Joint work with Naoki Egami (University of Tokyo)

Experiments in Governance and Politics Conference

University of California, Los Angeles

February 20, 2015
Interaction and Causal Heterogeneity

- Heterogenous treatment effects:
 1. **Moderation**
 - How do treatment effects vary across individuals?
 - Who benefits from (or is harmed by) the treatment?
 - Interaction between treatment and pre-treatment covariates
 2. **Causal interaction**
 - What aspects of a treatment are responsible for causal effects?
 - What combination of treatments is most efficacious?
 - Interaction between treatment variables
 3. **Individualized treatment regimes**
 - What combination of treatments is optimal for a given individual?

- The focus of this talk: causal interaction
Two Interpretations of Causal Interaction

1. **Conditional effect interpretation:**
 - Does the effect of one treatment change as we vary the value of another treatment?
 - Does the effect of being black change depending on whether an applicant is male or female?
 - Useful for testing moderation among treatments

2. **Interactive effect interpretation:**
 - Does a combination of treatments induce an *additional effect* beyond the sum of separate effects attributable to each treatment?
 - Does being a black female induce an additional effect beyond the effect of being black and that of being female?
 - Useful for finding efficacious treatment combinations in high dimension
An Illustration in the 2×2 Case

- Two binary treatments: A and B
- Potential outcomes: $Y(a, b)$ where $a, b \in \{0, 1\}$
- **Conditional effect interpretation:**
 \[
 \left[Y(1, 1) - Y(0, 1) \right] - \left[Y(0, 1) - Y(0, 0) \right]
 \]
 effect of A when $B = 1$
 \[
 \left[Y(1, 0) - Y(0, 0) \right]
 \]
 effect of A when $B = 0$

- **Interactive effect interpretation:**
 \[
 \left[Y(1, 1) - Y(0, 0) \right] - \left[Y(0, 1) - Y(0, 0) \right] - \left[Y(0, 1) - Y(0, 0) \right]
 \]
 effect of A and B
 \[
 \left[Y(1, 0) - Y(0, 0) \right]
 \]
 effect of A when $B = 0$
 \[
 \left[Y(0, 1) - Y(0, 0) \right]
 \]
 effect of B when $A = 0$

- The same quantity but two different interpretations
- The interactive interpretation requires the specification of the **baseline condition**: $(A, B) = (0, 0)$ in this example
In the 2×2 case, computing all four average potential outcomes gives a complete picture.

The dimensionality rapidly increases as the number of levels and treatments increase:

- 3 trichotomous treatments: $3^3 = 27$
- 4 treatments with each having 4 levels: $4^4 = 256$

A motivating example: Conjoint analysis (Hainmueller et al. 2014)

- Survey experiments to measure immigration preferences
- A representative sample of 1,396 American adults
- gender2, education7, origin10, experience4, plan4, language4, profession11, application reason3, prior trips5
- Over 1 million treatment combinations
- What combinations of profiles characterize (un)preferred immigrants?

We focus on the interactive interpretation in high dimension.