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Abstract

The evaluation of research depends on assessments of the quality of underlying research
designs. Surprisingly, however, there is no standard definition for what a design is. We pro-
vide a framework for formally characterizing the analytically relevant features of a research
design. In standard applications, the approach to design declaration we describe requires
defining population structures, a potential outcomes function, a sampling strategy, an assign-
ment strategy, estimands, and an estimation strategy. Given a formal declaration of a design
in code, Monte Carlo techniques can then be easily applied to a design in order to diagnose
properties, such as power, bias, expected mean squared error, external validity with respect
to some population, and other “diagnosands.” Declaring a design in computer code lays
researchers’ assumptions bare and allows for clear communication with readers. Ex ante de-
sign declarations can be used to improve designs and facilitate preregistration, analysis, and
ex post reconciliation of intended and actual analyses. Design declaration is also useful ex
post however and can be used to describe and share designs as well as to facilitate reanalysis
and critique. We provide an open-source software package, DeclareDesign, to implement the
proposed approach.
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Authors and readers of empirical research each have an interest in being able to assess the prop-

erties of research designs. In doing so, however, they face two challenges.

First, there are very few tools for assessing the properties of designs. At one extreme, re-

searchers resort to rudimentary power calculators with often hidden assumptions or rely on

rules of thumb that may not account for important idiosyncratic features of the research set-

ting. At the other extreme, some scholars conduct fully-fledged simulations requiring advanced

programming skills beyond the capabilities of many applied researchers. General-use tools for

assessing important properties of designs beyond statistical power, such as bias, are not available.

Second, surprisingly little attention has been paid to the more fundamental question of what

constitutes a design. This lack of clarity carries risks both before and after the implementation of

a study. If designs are incompletely specified ex ante it is difficult for researchers to assess their

strengths and improve them. If they are incompletely specified at the time of analysis, concerns

about data snooping may arise. If they remain unspecified after analysis, it may be difficult for

other scholars to know how to replicate a study or whether a given type of reanalysis is justified.

In this paper we describe an approach that addresses these two problems by, first, enabling

researchers to declare research designs1 mathematically and as computer code objects and, sec-

ond, to diagnose the statistical properties of the design relying on this declaration. We formally

define research designs and clarify what features of the design must be declared in order to im-

plement, communicate, and assess its properties. When possible we see advantages to formally

characterizing and diagnosing designs before implementation. The resulting design description

and diagnosis can then serve many purposes. A researcher may wish to include them as part of

a preanalysis plan or a funding request. Whether or not the declaration and diagnosis serves this

purpose, we believe that the process of generating them will provide researchers an opportunity

to learn about and improve their inferential strategies. Even if only declared ex-post, formal

declaration still has advantages; the complete characterization can help readers understand the

properties of a research project, facilitate replication, and contribute to re-analysis decisions.

The approach we describe is clearly more easily applied to some types of research than others.

In prospective confirmatory work, for example, researchers may have access to all design relevant

1We emphasize that the term “declare” does not imply a public declaration or a declaration before research takes
place. A researcher may declare the features of designs in our framework for their own understanding and declaring
designs may be useful before or after the research is implemented.
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information in advance. For some forms of structured exploratory work, for example using

cross validation techniques, an exploration strategy may also be described in advance. For other

forms of exploratory work, however, researchers may simply not have enough information about

possible quantities of interest to declare a design in advance. Although in some cases the design

may still be declared ex post, in others it may not be possible to fully reconstruct the inferential

procedure after the fact. For instance although researchers might be able to provide compelling

grounds for their inferences, they may not be able to describe what inferences would have been

made for all possible data. Thus variation in research strategy limits the utility of our procedure

for different types of research. In the conclusion, we discuss possible implications of this.

We define research designs through a set of features that include the population, potential

outcomes function, sampling procedure, estimands, assignment procedure, and estimators. Not

all research designs will include all of these features.2 We show how each of these features can

be defined in mathematical notation as statistical distributions and mappings. In addition, we

formalize the notion of “diagnosands,” or statistical summaries of the design such as the power

of the design, the bias of the estimator, or the expected mean squared error (MSE) of the estimates

with respect to an estimand. A design is “θ-complete” in our framework when a diagnosand θ

can be estimated from the declared features of the design. We highlight that we do not have a

general notion of “complete” design, but rather adopt an approach in which the purposes of the

design determine which features must be declared.

Our notion of θ-completeness requires that the question “what is the value of θ?” is answer-

able. Design descriptions might not be θ-complete for two reasons: not enough information has

been provided or θ might be undefined for the design. If θ is power, the probability of correctly

rejecting a false null hypothesis, a design might not be power-complete because some crucial

piece of information is missing (e.g., the distribution of a test statistic is not specified) or be-

cause power is an undefined concept in the design (e.g., the design does not involve hypothesis

testing). Additionally, even when a design is θ-complete, θ itself might be a poor indicator of a

design’s inferential value. For example, if p-values are calculable but incorrect,3 then the estimate

2We discuss in Section 3 how to declare and diagnose designs that do not include sampling procedures, assignment
procedures, potential outcomes.

3In the sense that the p-values do not accurately represent the probabilities under the appropriate null hypotheses
of obtaining test statistics at least as extreme.
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of power could be misleading. Thus, good diagnosis requires a judicious choice of diagnosands.

Authors can assess the properties of θ-complete research designs in order to improve designs

before implementation. Readers and replication authors can diagnose designs before or after

implementation in order to select and critique studies based on their designs rather than their

results. In general, we do not provide specific guidance on the set of diagnosands that must be

calculable in order for a design to be complete “enough.” Domain-specific standards might be

agreed upon among members of research communities. A standard set might include power,

bias, root mean-squared error, and coverage. Others who concerned about the policy impact of a

given treatment might require a design that is θ-complete for an out-of-sample diagnosand such

as bias relative to the population average treatment effect.

Diagnosis can be executed analytically for simple designs or through Monte Carlo simulation

for more complex designs. We provide an algorithm for simulation that produces diagnosand

estimates as well as bootstrapped estimates of simulation uncertainty.

Our framework makes five principal contributions: it enables the diagnosis of designs in

terms of their probative value; it enhances research transparency by making design choices ex-

plicit; it assists learning about the properties of research designs; it assists in the improvement of

research designs through comparison with alternatives; and it provides tools to assist principled

replication and reanalysis of published research.

1. Formally Defining a Research Design and Its Diagnosands

How do we know when a study is likely to provide good answers to the questions it poses?

When designing research, budget-constrained scholars must choose among alternative sampling

strategies, estimators, and (if the study is experimental) treatment assignment schemes. Current

practice focuses narrowly on some aspects of a research strategy while neglecting other equally

important features. For example, many funding agencies require power calculations but do not

require a definition of the estimand. As noted above, it is possible in such cases to design “good”

studies that produce over-confidence in the wrong answer, if the estimator is both biased and

precise.4 To understand the expected bias of a study, we must at the very least know its estimand.

4Difference-in-difference designs, for example, are a popular choice for policy impact evaluations but have been
shown to exhibit high false positive rates (Bertrand, Duflo and Mullainathan, 2004). That is, they commonly exhibit
coverage rates that are too low.
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By characterizing the analytically-relevant features of a research design we can understand a

design’s potential to provide useful answers.

1.1 Defining a Research Design

In order to be able to diagnose a research design’s statistical properties, design features must be

declared exactly. Here, we provide a formalization of research designs at a high level of abstrac-

tion and in doing so provide a definition of designs whose analytic features can be simulated and

diagnosed. This discussion draws on formal accounts of research designs in Imbens and Rubin

(2015) and especially Pearl (2009).

The key feature of the formal definition employs an augmented “Pearlian DAG” (Dawid,

2010) that characterizes relations over three sets of variables: a set of endogenous variables, Y,

a set of background variables, X, and a set of possible “manipulands” (or “intervention nodes”

in Dawid, 2010), Z. The set Z includes all conditions that are notionally under the control

of a researcher, whether or not that control is exercisable in practice (or exercised).5 The set

Y includes all outcomes that are dependent on possible manipulands, including, for example,

membership of a study sample, treatment compliance, mediating variables, data missingness,

and even estimates. Given this structure, estimands are the quantities a researcher wants to

estimate, such as causal quantities like the average treatment effect, but also non-causal quantities

such as the average height of a population. These can be defined as summaries of potential values

of Y given different values of X and Z, though they may also depend on realizations of data.

Summary statistics are calculations that can be made based on the realized data alone. Estimates

are summary statistics of realized data that are associated with estimands. Other summary

statistics, such as a p-value are associated with an implied hypothesis.6 Some summary statistics,

such as “whether a calculated p-value is less than 0.05,” are useful for assessing the properties of

a design. The distributions of such “diagnostic statistics” over repeated draws form the basis for

“diagnosands.” For example, the expected value of the diagnostic statistic “whether a calculated

p-value is less that 0.05” is the diagnosand “statistical power.”

5“Augmented” graphs enumerate these manipulands explicitly whereas non-augmented Pearlian graphs assume
that interventions are possible on all endogeneous variables in the system.

6In our formulation of a design, hypotheses do not play a distinct role beyond their implicit role in the implemen-
tation of tests.
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Figure 1: Illustration of a Research Design Represented as a Directed Acyclic Graph (DAG). Black
arrows denote possible causal relationships. Each variable is thought of as a vector of outcomes for a
population and so spillovers are naturally admitted by the DAG (the potential outcomes of each unit are a
function of the entire vector of assignments). Noncompliance is captured by including a compliance poten-
tial outcome (Y2) in the DAG; mediation is captured by including an intermediate potential outcome (Y3);
attrition is captured by including a measurement potential outcome (Y5). The graph indicates a possibly
complex assignment strategy in which assignment of a mediator (Z3) possibly depends on assignment to
a treatment (Z1).

Figure 1 illustrates a general structure that could represent many research designs focusing

on the question of how political campaigns mobilize supporters. The directed acyclic graph

(DAG) of this setting includes possible relationships between manipulands Z and background

features X to outcomes Y and ultimately to estimates τ̂. Note that missing arrows describe

possible exclusion restrictions, but not all of these are necessary (for example Xo could also affect

Y2 directly, or Y5 in the case of attrition, or it could affect Z1, if blocking is used). The DAG could

be used to represent a research design in which campaign calls are randomly assigned by the
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research team or a descriptive design in which the campaign’s choices are outside of researcher

control (in which case Z1 would be set to idle, meaning it takes on values naturally). We discuss

this illustration further in Appendix B.

With this structure in mind, we now formally define the key features of a research design:

1. Variables. Let D denote a collection of variables indexed by j and let VpDjq denote the

space of possible values for variable Dj. Relations between variables in D are represented

by a directed acyclic graph (a DAG) which records conditional independencies of the joint

distribution of variables. Let papDjq denote the “parents” of Dj, that is, the set of variables

on which Dj depends directly.

We assume that the set D can be partitioned into three classes.

• Population. Set X is a collection of observed and unobserved baseline variables (or

“background” variables), that are not treated as being even notionally under the con-

trol of researchers. Let pX denote a probability distribution over possible values of X,

VpXq.

• Potential Outcomes. Set Y contains outcomes of interest such as whether a drug

is offered by a doctor, and whether a drug is ingested. We let the mapping f j
y :

Ś

DkPpapY jq VpDkq Ñ VpY jq denote the potential outcomes function of variable Y j. We

use fy to denote the collection of potential outcome functions. Note that by positing

such a function we assume a functional causal model (Pearl, 2009): potential outcomes

of variables in Y are determined by their parents; any randomness in the potential

outcomes is introduced via distributions on X.

• Manipulands. Set Z contains variables that are under the “notional control” of re-

searchers. For each non-terminal Y j in set Y there is a parent variable Zj that char-

acterizes potential manipulations of Y j. We assume that VpZjq is an augmentation of

VpY jq that allows each unit to take value idle (or “m”). For example VpY jq “ t0, 1u3 Ñ

VpZjq “ t0, 1, mu3. The idea of “notional control” is that controlled manipulation of

the variable is conceivable in the sense described by Holland (1986), and not that such

manipulation is practically possible.
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Following Pearl, we assume that the potential outcomes mapping satisfies “effectiveness”—

meaning that units that are assigned to manipuland conditions that are notionally under

a researcher’s control receive those precise manipuland conditions7— and “modularity”

—meaning that Y j is independent of Zk for all j ‰ k conditional on papY jq X Y (Dawid,

2010); informally, the response of an outcome to a treatment is the same whether or not the

treatment is directly manipulated.

2. Manipuland Assignment (Probability distribution). Let pZj p¨|papZjqq denote a probability

distribution over the possible values of a manipuland, VpZjq, given the parents papZjq. Zj

has no parents when assignment does not depend on background characteristics. In cases

in which a manipuland is not manipulated, pZj places all probability mass on the condition

idle for all units. The manipulation strategy, pZ, is a collection of assignment distributions

for all zj P Z. The manipulation strategy describes not just how manipuland conditions are

assigned to units but also whether manipulands are manipulated. Note that a sampling

strategy is a part of the manipulation strategy that determines the units over which data

is gathered. Since sampling strategies play privileged roles in designs below we use use

pS to describe the sampling strategy and when there is no risk of confusion, pZ to refer to

non-sampling components of the manipulation strategy.

3. Data. Let pD denote a probability distribution over D induced by pX, pZ, and fy. Let

D denote the set of all possible data (“superdata”) and d a particular realization of data.

Note that D includes all potential outcomes given different possible assignments z and

background characteristics x.

4. Estimands (Function). Let τpD, d, pZq denote an estimand and pτq a collection of such

estimands. An estimand is a summary of potential outcomes, recorded in superdata. It may

also depend on realizations of assignments, recorded in d, and be sensitive to assignment

schemes (pZ). See Appendix A.1 for a discussion of different classes of estimands.

5. A summary statistic (Function) ϕpd, pZq is a function and (ϕ) a collection of functions of re-

7This assumption does not rule out the possibility of non-compliance in a usual sense: for manipuland conditions
outside a researcher’s control, the manipuland condition assigned and manipuland condition received should be
thought of as separate elements of Y.
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alized data and the manipulation strategy; and an estimate τ̂pd, pZq, is a summary statistic

and (τ̂) a collection of summary statistics that has an associated estimand τ.

6. Strategy. Let the triple Σ ” ă pZ, pτ̂q, pϕq ą denote a researcher’s strategy. The strat-

egy includes both the manipulation strategy—including both treatment assignments and

measurement—and the analysis strategy.

7. Design. Let the tuple ∆ ” ă pX, fy, Σ, pτq ą denote a study design, which consists of a

set of beliefs about the world pX, a set of conjectures about potential outcomes functions

fy, a strategy Σ to manipulate and interrogate the world, and a set of target quantities of

interest, pτq. Each element in this tuple depends on previous elements in the tuple but not

vice versa.

Designs need not include all six elements of a design to be described in this way. Designs

without random assignment of a treatment may nevertheless have manipulands related to sam-

pling or data collection. Designs without sampling can be described as designs in which all units

are sampled. Descriptive designs include outcomes that have no manipuland parents and are

only functions of population variables. We describe in Section 3 how to characterize a range of

designs that do not include treatment assignment, sampling, potential outcomes, or even varia-

tion in outcomes.

Our definition of a research design captures its analysis-relevant features; it does not de-

scribe substantive elements, such as how interventions are implemented or how outcomes are

measured. Yet many other aspects of a design that are not explicitly labeled in these features

nevertheless enter into this framework if they are analytically relevant. For example, logistical

details of data collection such as the duration of time between a treatment being administered

and endline data collection do not obviously appear in the ten design features. However, the

duration might enter into the potential outcomes function if the longer time until data collection

affects subject recall of the treatment.

1.2 Diagnosing the Properties of a Research Design

To allow for diagnosis of a design, we introduce two further concepts, both functions of research

designs:
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1. Diagnostic Statistic (Function) tpd, ∆q is a function of a design and data. Some diagnostic

statistics, such as the mean of an outcome, depend on data only. For example, a researcher

might define the z-statistic (a summary statistic in the design), given data as zpdq. This

in turn implies a p-value, for example ppdq “ 1 ´ Φpzpdqq, for a one sided test, where Φ

denotes the cumulative normal distribution. A third party examining the design may not

agree with the manner in which ppdq is defined in the design, but they can still use ppdq

to generate a diagnostic statistic. Although this statistic is not part of the design, it is

nevertheless calculable from the data, given the design, as:

spdq “ Ipppdq ď 0.05q

Diagnostic statistics can also depend on potential outcomes as well as realized data. For

example the statistic:8

eDIM
ATE pd, ∆q “ EpX pτATEp fyq ´ τ̂DIMpdqq

denotes the average difference, over possible populations, between the ATE and the esti-

mated ATE, as estimated using a difference-in-means (DIM) estimator.

2. Diagnosand (Function) θpd, ∆q is a summary of the distribution of a diagnostic statistic.

In most cases we are interested in the expected value of a diagnostic statistic given the

distribution of the data implied by a design and prior uncertainty. For example, given the

diagnostic statistics described above, (expected) bias9 in the population treatment effect is:

E fD eDIM
ATE pd, ∆q and (expected) power is: E fD spdq.

What diagnosands should researchers choose? Although researchers commonly focus on sta-

tistical power, a large range of diagnosands can be examined. These include the expectation and

standard deviation of the estimates; the expectation and standard deviation of the estimands

8Note on notation. We use E to denote both expectations and averages: EAx denotes the average of x in group A;
E f x denotes the expected value of x given distribution pZ:

• EAx “ 1
#|A|

ř

iPA xi

• E f x “
ş

x f pxqdx.

9“Expected” is not redundant here under the interpretation of pX , reflecting prior uncertainty.
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(which may vary across draws of the population, for example); statistical power; expected im-

balance; and a set of diagnosands defined with respect to the defined estimates and estimands,

including bias, root mean squared error, coverage, “type S” error rate, and the exaggeration ra-

tio (Gelman and Carlin, 2014). This set of statistics allows researchers to understand the proper-

ties of the estimates across possible realizations of the data and how successful their manipulation

and estimation strategies are at estimating estimands. Though these are frequentist properties,

they can applied equally to frequentist and Bayesian estimation strategies with judicious choices

of diagnosands, as we illustrate below (see Rubin, 1984).

Design diagnosis also provides a framework for assessing the “external validity” of a research

design in the limited sense of the ability to make inferences to an out of sample estimand. In

some cases, this refers to new subgroups within the population. For example, survey experiments

conducted on convenience samples online may or may not reveal insights that generalize to

the U.S. population at large. If treatment effects vary substantially across individuals, but the

study is conducted on a sample that has relatively high average treatment effects, then the study

might exhibit low external validity. The extent to which such discrepancies represent a scientific

problem can be explored by changing the sampling strategy and potential outcomes functions.

Diagnosands can also be defined for properties that reach beyond classical statistics. For

example one might define a study as “conclusive” if some evidence is observed, whether or not

formal hypothesis tests are conducted, an inference as “robust” if the same inference is made

under different analysis strategies, or an intervention as having “value for money” if some set of

estimates have some minimal magnitude. In these cases a diagnosis reports the chances that a

study will be considered conclusive, an inference considered robust, or an intervention deemed

to have value for money. These three diagnosands depend on observed data only. More subtle

analogues can be defined that also make use of potential data, for example one might define a

diagnosand as the chances that an intervention is correctly considered value for money.

1.3 What is a Complete Research Design Declaration?

A declaration of a research design that is in some sense complete is required in order to imple-

ment it, communicate its essential features, and to assess its properties. Yet existing definitions

make clear that there is no single conception of a complete research design that is satisfactory
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for all purposes: the Consolidated Standards of Reporting Trials (CONSORT) Statement widely

used in medicine includes 22 features and other proposals range from nine to 60.10

In current practice, research designs are commonly declared in terms of the elements required

to implement the study. The set of features that are often described include the assignment

procedure including sampling and treatments as well as the estimation strategy. This corresponds

formally to the design Σ, including the manipulation strategy pZ, estimator pτ, and summary

statistics ϕ. In some cases, minimal descriptions of potential outcomes mappings fy in terms of

expected effect size or direction are also included. However, though a design described in this

minimal way could be implemented, the researcher might not be able to diagnose many of its

properties ex ante.

We propose instead a conditional notion of completeness: we say a design is “θ-complete” if

a diagnosand θ can be estimated from the declared design. Consider for example the diagnosand

statistical power. Power is the probability that a p-value is lower than some value, defined over

all possible realizations of the data, conditional on beliefs about the world and an estimator,

Prpϕpdq ă α | pX, fy, τ̂q. This notion of completeness does not imply a completeness ordering:

for example a design that does not specify an estimand may be power-complete but not bias or

RMSE complete; a design that does not specify a statistical test may be bias complete but not

power complete.

2. Declaring and Diagnosing Research Designs in Practice

We described an approach to defining a research design mathematically in Section 1 and in what

follows we demonstrate how a design can be declared as an object in computer code and then

simulated in order to diagnosing its properties.

2.1 Characterizing Research Designs in Code

Characterizing or “declaring” designs in a common computer-based syntax has three main ad-

vantages. First, when a design is transformed into a code object its diagnosands can be quanti-

fied. For example, the root mean squared error (RMSE) of RMSE-complete designs is not only

defined, it can be numerically estimated through Monte Carlo analysis on a computer. Second,

10See “Pre Analysis Plan Template” (60 features); World Bank Development Impact Blog (nine features).
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objects created through a common computer language are directly comparable. The core struc-

ture of the language we propose provides leeway to accommodate user-defined functions, but

also easy-to-use defaults. Third, the ability to re-use the design code throughout the lifecycle of

a study presents a practical advantage. The very same code used, say, to declare the assignment

mechanism in a randomized trial can also be used to implement sampling given population data,

randomize treatment assignment given sample data, and implement analysis given outcome data.

For simplicity the assignment process is divided into two parts in order to privilege sampling

procedures. In practice researchers often engage in sampling and make all other assignment

decisions, including data collection decisions, conditional on sampling. Privileging this design

feature will simplify the declaration of many designs although as seen from the formalization, it

is not analytically necessary.

In what follows, we demonstrate how each feature can be defined in code, with an application

in which the assignment procedure is known. This could represent an experimental or quasi-

experimental design.

pX The population. Defines the population variables, including both observed and unob-

served X. In the example below we define a function that returns a normally distributed

variable of a given size. Critically, the declaration is not a declaration of a particular real-

ization of data but of a data generating process. Researchers will typically have a sense of

the distribution of covariates from previous work, and may even have an existing dataset

of the units that will be in the study with background characteristics. Researchers should

assess the sensitivity of their diagnosands to different assumptions about pX.

my_population <- function(size) { data.frame(u = rnorm(size)) }

population <- declare_population(

custom_population_function = my_population, size = 100)

pS Assignment 1: The sampling strategy. Defines the distribution over possible samples for

which outcomes are measured. Formally pS is a component of pZ, though it is given the

special attention paid to it in many studies. In the example below each unit generated by

pX is sampled with 10% probability. Again my_sampling describes a strategy and not an

actual sampling.
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my_sampling <- function(data) {

rbinom(n = nrow(data), size = 1, prob = 0.1) }

sampling <- declare_sampling(sampling_function = my_sampling)

pZ Assignment 2: Treatment assignment. Defines the strategy for assigning variables un-

der the notional control of researchers. In this example each sampled unit is assigned to

treatment independently with probability 0.5. The default assumption in our code is that

treatment assignment takes place after sampling though as a general matter this need not

be the case. In designs in which the sampling process or the assignment process are in the

control of researchers, pz is known. In observational designs, researchers either know or

assume pz based on substantive knowledge.

my_assignment <- function(data) {

rbinom(n = nrow(data), size = 1, prob = 0.5) }

assignment <- declare_assignment(assignment_function = my_assignment,

condition_names = c(0,1))

fy The potential outcomes. The potential outcomes function defines conjectured potential

outcomes given manipulands Z and parents. In the example below the potential outcomes

function maps from a treatment condition vector (Z) and background data u, generated

by pX, to a vector of outcomes. In this example the potential outcomes function satisfies

a SUTVA condition—each unit’s outcome depends on its own condition only, though in

general since Z is a vector, it need not.11 It also assumes that potential outcomes depends on

treatment assignment and not on sampling. Again, the declaration describes the function

and not a particular set of potential outcomes.

my_potential_outcomes <- function(data) { with(data, Z * 0.25 + u) }

potential_outcomes <- declare_potential_outcomes(

potential_outcomes_function = my_potential_outcomes,

outcome_variable_name = 'Y',

condition_names = c(0, 1))

In many cases, the potential outcomes function (or features of it) is the very thing that

the study sets out to learn, so it can seem odd to assume features of it. We suggest two

11For an example of a function that does not satisfy SUTVA consider Y “ Z ` minpZ ˆ uq, for vectors Y, Z, u.
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approaches to developing potential outcomes functions that will yield useful information

about the quality of designs. First, set a potential outcomes function in which the variables

of interest are set to have no effect on the outcome whatsoever. Diagnosands such as bias

can then be assessed without having to assume a particular relationship between treatments

and outcomes. This approach will not work for some diagnosands such as power or Type-S

errors. Second, consider setting a series potential outcomes functions that correspond to

competing theories. This enables the researcher to judge whether the design yields answers

that help adjudicate between the theories and whether the design has desirable properties

(i.e. sufficient power) under the potential outcomes implied by each theory.

τ The estimands. The estimand function τ creates a summary of potential outcomes us-

ing ‘superdata’ that can be generated from the elements declared above. In principle the

estimand function can also take realizations of assignments as arguments, in order to cal-

culate post-treatment estimands. Below, the estimand takes the mean difference between

the potential outcomes for units in a treated condition and units in a control condition.

my_estimand <- function(data) { with(data, mean(Y_Z_1 - Y_Z_0)) }

estimand <- declare_estimand(estimand_function = my_estimand,

potential_outcomes = potential_outcomes)

ϕ, τ̂ The summary statistics are functions that use information from realized data and the de-

sign, but do not have access to the full schedule of potential outcomes. In the declaration

we associate estimators with estimands and we record a set of summary statistics that

are required to compute diagnostic statistics. In the example below an estimates function

takes data and returns an estimate of a treatment effect using regression as well as a set of

associated statistics, including the standard error, p-value, and the confidence interval.

my_estimates <- function(data) {

reg <- lm(Y ~ Z, data = data)

phi <- as.list(summary(reg)$coefficients["Z", ])

c(est = phi$Estimate, se = phi$"Std. Error", p = phi$"Pr(>|t|)") }

estimator <- declare_estimator(estimates = my_estimates, estimand = estimand)

These six features represent the study. In order to assess the completeness of a declaration and
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to learn about the properties of the study, we also define functions for the diagnostic statistics,

tpD, Y, f q, and diagnosands, θpD, Y, f , gq. These could be coded as a single function for simplicity.

An example function for calculating bias as a diagnosand is:

diagnosand <- declare_diagnosand(

diagnostic_statistic_text = "est - estimand",

summary_function = mean

)

These seven functions could be written in many code languages. In the companion software

for this paper, DeclareDesign (Blair et al., 2016a), we implement it for the widely-used R platform.

In practice we advocate declaring simple designs using “design templates” that create full

design objects given a small number of critical arguments. In the companion software we include

a function quick_design that lets one generate one or many designs from a “design template.”

For example the template k_arm_design_template can be used together with quick_design to

generate one or more multi-arm designs. In section 4 we illustrate the use of such templates to

compare multiple designs.

Design diagnosis through simulation places a burden on researchers to come up with realistic

values for pX, pZ, and f . The utility of any particular diagnosis for making research decisions

of course depends on the plausibility of the design declaration: the value of the diagnosis is

only as good as the inputs. This problem is familiar from power calculation. Power calculators

also make implicit assumptions about pX, pZ, and f , yet these choices are typically hidden. A

principle advantage of our approach is that such implicit assumptions are rendered explicit.

We advocate that researchers diagnose designs not for their single best guesses of pX, pZ,

and f but rather for a range of plausible values indicated by past studies, pilot data, and theory.

The quality of the research strategy can then be judged by how it performs across this range of

scenarios.12 In a sense, what design declaration offers is not a tool to establish that a design has

desirable qualities but a tool to lay bare under what assumptions a design has desirable properties.

12This is distinct from sensitivity analysis as sensitivity analyses are conducted conditional on realized data.
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2.2 Estimating Diagnosands through Simulation

Research design diagnosis—the estimation of diagnosands—can be accomplished in two ways:

analytically and through Monte Carlo simulation. For simple designs there may be analytical

solutions to the diagnosand, for example statistical power as a function of the sample size. In

this case, the researcher can derive the solution and plug in values of those variables in order

to report the values of the diagnosands. In other cases, indeed for most moderately complex

designs, either there are not closed-form solutions or they are difficult to derive.

For complex designs, we recommend Monte Carlo simulation of research designs to estimate

the value of diagnosands. The researcher, using the population function defined in computer

code, draws a population, samples units (if relevant), and within that sample assigns treatments

(if any) using the assignment function, calculates observed outcomes from the potential outcomes

function, estimates from the estimator function, and then estimands, diagnostic statistics, and

diagnosands from their respective functions. This nested set of calculations is analogous to

running the study over and over. Here, instead of conditioning on a given dataset we also

simulate the data-generating process, which enables us explore the properties of the design across

potential draws of the data.

We now present the procedure for calculating a single draw of a diagnostic statistic formally:

1. Draw a population x using pX.

2. Calculate potential outcomes Y using fy, given x and record these in superdata D|x.

3. Draw sampling and treatment assignments z using pS and pZ.

4. Calculate observed outcomes using fy and z. This generates dataset d.

5. Calculate estimands using τpD, pZ, dq.

6. Calculate summary statistics, pτ, ϕ, using d and pZ.

7. Calculate a diagnostic statistic t using d and τ, and perhaps pS and pZ.

In the simplest case, estimating a diagnosand is straightforward. We conduct steps 1-7 mpop

times in order to obtain mpop diagnostic statistics. The distribution of these diagnostic statistics

can then be summarized in order to estimate diagnosands, typically by calculating their mean or

standard deviation. Some simulations will have more complex structures: within a given draw of

x, samples might be drawn msamp times and within each sample, assignments might be allocate
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massign times. Researchers may be interested in diagnosands that depend on this structure, such

as what is the standard deviation of sample average treatment effects.

Diagnosands can be estimated with arbitrary precision by increasing the number of draws at

each level (population, sampling, assignment). However, simulations are often computationally

expensive. In order to assess whether researchers have conducted “enough” simulations to be

confident in their diagnosand estimates, we recommend estimating the sampling distributions

of the diagnosands via the nonparametric bootstrap. With the estimated diagnosand and its

standard error, we can construct a confidence interval to make a decision about whether the

range of likely values of the diagnosand compare favorably to reference values such as statistical

power of 0.8. We emphasize that this confidence interval reflects both estimation uncertainty

(simulation error) and fundamental uncertainty (true variability in the diagnosand, for example

across possible population draws).13

Simulation has two chief advantages. First, it is straightforward for scholars to diagnose

designs without deriving closed-form expressions for diagnosands. They need only declare in

code the six features of their design as well as their diagnosands. Second, it allows researchers

to quickly diagnose variations of their designs with a few small changes to the computer code.

3. Declaring Common Observational Research Designs

The framework we propose can be used to declare and diagnose a range of research designs

typically employed in the social sciences. Whereas the most obvious fits may appear to be ran-

domized experiments, in which researchers control treatment assignment, or quasi-experimental

designs, in which treatment processes are known, the scope for design declaration is considerably

more general. Below we sketch declarations of designs for cases in which, there is no notion of

counterfactuals, no notion of potential outcomes, no experimental control, no known assignment

procedure, no null hypothesis testing procedure, and no assumption of variation in the observed

outcomes.14

13This procedure depends on the researcher choosing a “good” diagnosand estimator. In nearly all cases, diag-
nosands will be features of the distribution of a diagnostic statistic that, given i.i.d. sampling, can be consistently
estimated via plug-in estimation (for example taking sample means). Our simulation procedure, by construction,
yields i.i.d. draws of the diagnostic statistic within each level.

14Many designs will not have sampling procedures. We note that these can also be described as designs in which
all units are sampled and thus their declaration and diagnosis is straightforward.
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3.1 Descriptive Inference

Many research projects are not centered around the estimation of causal effects. Descriptive

research questions often center on measuring a parameter in a sample or in the population,

such as the proportion of voters in the United States who support Hillary Clinton. Although

seemingly very different from designs that focus on causal inference—because often there are

no explanatory variables—the formal differences are not great. In particular descriptive studies

may include possible manipulands (for example ways of phrasing a survey question) and so may

involve potential outcomes (if for example the measure itself is an outcome). The key difference

is that the estimands of descriptive studies depends on outcomes that have been realized and

not on counterfactuals. Formally then the estimands are a function of d and not Dzd and are a

special case of the general class of designs formalized above

In Appendix C.1 of the appendix, we examine an estimator of candidate support that condi-

tions on being a “likely voter.” For this problem the data that help researchers predict who will

vote is of critical importance. In the example, analysts declare the full measurement procedure,

including the possibly imperfect procedure for determining who is a likely voter, and uses that

to assess the risk of falsely concluding that Hillary Clinton’s general election support is above

50%.

3.2 Discovery

In some research projects the ultimate hypotheses that are assessed are not known at the the

design stage. Some inductive designs are entirely unstructured and explore a variety of data

sources with a variety of methods within a general domain of interest until a new insight of

some type is uncovered. Yet many can be described in a more structured way. In studying

textual data, for example, a researcher may have a procedure for discovering the “topics” that

are discussed in a corpus of documents. Before beginning the research, the set of topics and

even the number of topics is unknown. Instead, the researcher selects a model for estimating the

content of a fixed number of topics (i.e. Blei, Ng and Jordan, 2003) and a procedure for evaluating

the model fit that is used to select which number of topics fits the data best. Such a design is

inductive, yet the analytical procedure of discovery can be described and evaluated.

Exploratory analysis after data is collected is ubiquitous in applied research including model
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selection and the detection of data anomalies such as outliers and heteroskedasticity. Discovery is

at the heart of this process. In section C.2 of the appendix, we given an example of a design dec-

laration for an exploratory data analysis procedure in which in a first stage the researcher explores

possible analysis strategies on half of the data and in the second stage apply their preferred pro-

cedure to the second half of the data. Split-sample procedures such as this enable researchers

to learn about the data inductively while still protecting against Type I errors (Fafchamps and

Labonne, 2016). We show how the researcher can evaluate if the procedure is bias-reducing in

their context and how much it reduces the power of the design given their hypothesis. Any

exploratory procedure in which the domain of exploration (for example, the set of models or

tests that will be conducted) and the decision rules (how the researcher selects among models or

changes the analysis in response to test values) are known can be explored.

3.3 Matching

In some observational research, assignment processes are not known. Instead, at the design

stage, researchers seek to identify conditions under which as-if random assumptions can be

made. In such cases, although researchers do not control assignment it is still possible to declare

an assumed assignment process. Designs that estimate causal effects using regression with co-

variates to condition on aspects of an assumed assignment process can similarly be declared and

diagnosed.

A matching design declaration provided in section C.3 of the appendix shows how under

some assumptions, matching improves mean-squared-error relative to a naive difference-in-

means estimator of the treatment effect on the treated (ATT), but can nevertheless remain biased

if the matching algorithm does not successfully pair units with equal probabilities of assignment.

3.4 Regression Discontinuity

Some observational strategies employing a potential outcomes framework do not rely on the as-

sumption that the assignment procedure is even as-if random. Consider, for example, the regres-

sion discontinuity design in which causal identification is premised on the claim that potential

outcomes are continuous at a critical threshold (and not from a claim of random placement of

units around a threshold). Although there is no random assignment, it is still possible to describe
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both the supposed data generating process and the potential outcomes. Variability in estimates

derives from sampling variability even if there is no variation induced by treatment assignments.

In section C.4 of the appendix, we provide an example of a regression discontinuity design

that assigns treatment deterministically when units are located beyond a threshold of 0 on the

running variable. Diagnosis of such a design makes clear that the estimand involved in many

regression discontinuity designs is rarely an average of potential outcomes of all units, but rather

an unobservable quantity defined at the limit of the discontinuity. Our framework is entirely

amenable to such diverse estimands.

3.5 Model-Based Estimands

Many observational studies seek to make causal claims but do not explicitly employ the potential

outcomes framework, instead describing estimands in terms of model parameters. Consider a

study that seeks to estimate parameter β from a model of the form:

yi “ α ` βxi ` ϵi (1)

In all our examples so far we have explicitly defined an estimand in terms of potential out-

comes. What is the estimand here? If we believe that Equation 1 describes the true data generat-

ing process then β is an estimand: it is the true (constant) marginal effect of x on y. But what if

we are wrong about the data generating process? We run into a problem if we want to assess the

properties of strategies under different assumptions about data generation if the estimand itself

depends on the data generating process.

An approach that can be used without assuming we know the data generating process is to

define the estimand as some summary of differences in potential outcomes across conditions, β

and then assess how well an OLS model estimates β under different conditions. For example we

might define α and β as the solutions to.

min
pα,βq

ÿ

i

ż

pyipxq ´ α ´ βxq
2 f pxqdx

Here yipxq is the (unknown) potential outcome for unit i in condition x. Estimand β can
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be thought of as the coefficient one would get on x if one were to able to regress all possible

potential outcomes on all possible conditions for all units (given density of interest f pxq). An

alternative might be to imagine some analogue of the ATT estimand, for example for some xi

defined on the real line we might define EpYipxiq ´ Yipxi ´ 1qq where xi is the observed treatment

received by unit i.

Such estimands require estimators that return scalar estimates of the estimands. In section

C.5 of the appendix we declare a design in which the properties of a regression estimate are

assessed under the assumption that in the true data-generating process y is in fact a nonlinear

function of x. Diagnosis of the design shows that under uniform random assignment of x,

the linear regression returns an unbiased estimate of a (linear) estimand, even though the true

data generating process is non linear. Interestingly, with the design in hand, it is easy to see

that unbiasedness is lost in a design in which different values of xi are assigned with different

probabilities.

3.6 Bayesian Estimation Strategies

In addition to modes of analysis that employ a classic null-hypothesis testing approach to statis-

tical inference, our framework can also be of use to Bayesian strategies. A range of interesting

diagnosands can be investigated to conduct ex ante sensitivity analysis and to assist Bayesian

model specification. For example, researchers can investigate which kinds of prior and like-

lihood specifications will lead to the greatest learning, measured either as a shift in the first

moments or as a reduction in the second moments when moving from the prior to the posterior

distribution over some parameter.

In section C.6 of the appendix, we declare a Bayesian descriptive inference design, in which

the researcher seeks to estimate an underlying probability of success in a population using a

beta-binomial model and a random sample of successes and failures. Because the underlying

DGP is a probit model, the DGP is slightly misspecified and we can see that a small amount

of bias arises. The diagnosis also reveals that the maximum a posteriori (posterior mode) is a

less biased estimator of the estimand than the posterior mean, due to the skew in the posterior

distribution. Flat priors enable the most learning, providing the greatest reduction in posterior

variance relative to the prior, and allowing for the largest shift in the first moment of the posterior
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relative to the prior. The diagnosis shows that, given his or her assumptions about the DGP, the

researcher would do best by employing flat priors and analyzing the posterior mode, rather than

the mean.

3.7 Process Tracing

While the strategies described above vary in fundamental ways, they all adhere to a recogniz-

able quantitative mode of analysis in which inferences are drawn by examining patterns across

multiple cases. In contrast, many qualitative researchers employ frameworks that may seem in-

compatible with the type of design declaration we have described, sometimes seeking to make an

inference on a single case. For qualitative designs that aim to confirm the presence or absence of

a causal relationship (i.e., that are not focused on theory generation), formal design declaration

and diagnosis may still be of some use.

There are many distinct approaches to process tracing, but for concreteness consider, a styl-

ized “process-tracing” design similar to ones described for example by Mahoney (2012) or in the

appendix to Bennett and Checkel (2014). A researcher selects a case in which some outcome is

observed (a revolution, say) and some possible driver is present (a strong middle class, say). The

researcher seeks evidence in archives that they believe to be “smoking gun evidence” (Van Evera,

1997) that the driver was indeed important for the outcome—for example they look for evidence

that the revolution was financed by domestic industry—and are prepared to draw different in-

ferences depending on what they find in this causal process observation. In this case there is

an implicit potential outcomes function, an estimand (whether the driver was a cause or not), a

sampling strategy, and an estimation strategy (e.g. conclude that the candidate driver was causal

if the causal process observation (CPO) is seen, remain agnostic otherwise). In this design there

is only one case and no variation in the observed outcomes. Power is not a meaningful diag-

nosand in this context, yet other diagnosands can come into play: for example expected error in

inferences. As with all the other designs, sensitivity of the diagnostics to researcher assumptions

about the causal model can be assessed.

In section C.7 of the appendix we give an example of a declaration of such a design assuming

a researcher uses a simple (non Bayesian) inference strategy, updating if and only if they see the

smoking gun CPO. As in many qualitative designs, the dataset is small and composed entirely of
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boolean data (logical true or false values). Diagnosis of the design shows that, if the researcher’s

beliefs about the CPO are correct, their inference will be unbiased in the cases in which the CPO is

observed but not in those cases in which it is not (and so not overall). This is because the research

strategy under analysis does not sufficiently discount the causal theory under investigation when

disconfirmatory evidence comes to light. This simple exercise illustrates how features of some

qualitative designs (such as the reliability of inference given the updating strategy) can be made

assessed using formal declaration.

4. Using Diagnosis to Develop Designs

In designing social science research, researchers face myriad tradeoffs whose features are not

obvious. The code-based declaration and diagnosis of designs described in this paper enable

authors and readers to learn about the consequences of these different design choices. In what

follows, we provide three examples that demonstrate how formal declaration and diagnosis of

designs can help assess difficult design choices with respect to sampling, treatment assignment,

and analysis.15 We emphasize that these tradeoffs can also be examined by readers and replica-

tion authors independently of one another.

4.1 Illustration of Analysis Decisions: Gains from Covariate Control

The Challenge. Researchers often have to decide whether to use controls when estimating treat-

ment effects from experimental or observational data. Some prefer estimates without controls,

some prefer employing controls that they expect to be associated with outcome variables, and

some prefer controls only if they find a correlation between the control variable and the explana-

tory or treatment variable. Among those that use controls, some prefer simple controls and some

prefer to interact controls with explanatory variables or treatments.

A lot can ride on what choices are made. We consider a potential outcomes function that

allows outcomes to be a function of a covariate X as follows:

YipZiq “ Zi ` γXi ` νϵi

15See the appendix for instructions on installing DeclareDesign and downloading the research design templates
illustrated in this section.

24



where Xi and ϵi are distributed with 0 mean and unit variance. To ease interpretation, assume

that VarpYp0qq “ VarpYp1qq “ 1 and that ϵ is orthogonal to X (note, this in turn implies that

ν “
a

1 ´ γ2).

The puzzle for researchers is now: Should you commit to using controls ex ante? How does the

decision depend on γ? We approach this question by declaring and diagnosing a set of designs.

Design Declaration. To be able to quickly generate many similar designs we create a “design

template” that can be used to declares designs as a function of arguments we may wish to vary. In

this case the template make_heterogeneous_fx_design(n, g), has one argument for the number

of units, (n), and another, g, for γ. For realism, this template included a wrinkle in which a

researcher has access only to some proxy for X, X̃, which implies that models that include X̃

are misspecified. The design estimates three models: Model Z1 uses regression to take simple

difference in means, Z2 includes a linear control for X̃ and model Z3 includes both a control for

X̃ and an interaction in X̃.

We can then create multiple designs using this template and compare the designs:

make_heterogeneous_fx_design <- get_template("covariate_control")

heterogeneous_designs <- quick_design(

template = make_heterogeneous_fx_design,

n = 20,

g = vary(0,.3,.6,.9))

compare_designs(design = heterogeneous_designs)

This code will create a matrix with the diagnosis of a design with 20 units, potential outcomes

generated under the assumption that γ ranges between 0 and 0.9, and analyses implemented

using all three estimators.

Results. Figure 2 shows the behavior of the three estimators for different values of γ. In addition,

it shows the behavior conditional on “statistically significant” imbalance on X̃ (dotted lines).

The results show that there can be large gains in power, without introducing bias, when there

is a true underlying relationship between the control and the potential outcomes. There are costs

however when the true relationship is weak, especially in those cases in which there is imbalance

between the covariate and explanatory variable. This highlights the risks of strategies that select

covariates based on balance tests without consideration for the relationship between the covariate
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Figure 2: Diagnoses of Designs with Varying Estimators Illustrate the Gains from Covariates. Power
and bias from models without controls (black lines; circles), with linear controls for X̃ (dark gray dotted
lines; triangles), and with controls interacted with treatment (light gray dashed lines; squares).

and potential outcomes. Finally note that when there is large imbalance on a prognostic covariate,

the simple difference in means estimator remains unbiased, but it can have a large mean squared

error, reflecting conditional bias.

4.2 Illustration of Sampling Decisions: Handling Spatial Spillovers

The Challenge. Researchers often tailor their sampling method in order to best recover inferential

targets, such as causal effects. In some settings researchers worry that the effect of an intervention

may “spill over” from units that received the intervention to those that did not. To guard against

such risks, they might impose a constraint on their sampling strategy, whereby no two units

will be sampled if they are deemed too close together. However, such strategies can result in

treatment and control groups that are far apart and frustrate efforts to compare like with like.

So their question becomes: what size ‘buffer’ to select given risks of bias on the one hand and risks
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of covariate imbalance on the other?

We answer the question by declaring and diagnosing a design that attempts to address

spillover risks by introducing buffers.

Design Declaration. Consider an experiment that assigns a treatment to neighborhoods within

cities (say, a leafleting strategy), and measures its effects on some outcome (say, voter turnout).

The researchers assign one neighborhood within each city to treatment, and one to control. How-

ever, they are concerned that the treatment may spillover onto adjacent neighborhoods, so they

consider using a ‘buffer’ to insulate treatment units from control units.

Figure 3 visualizes possible buffered sampling schemes. In the figure each circle represents

a neighborhood. In the left panel, two neighborhoods are selected without any regard for their

proximity (no spatial buffer). In the middle panel, two neighborhoods are selected such that they

are a distance of at least 3 units apart, and in the right panel only neighborhoods that are at least

4 units apart are selected.
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Figure 3: Illustration of the Implications for Sampling Probabilities of Spatial Buffer Sampling Strate-
gies when Baseline Outcomes are Related to Geography. The baseline outcome is highly correlated with
latitude (y axis). Three sampling strategies are illustrated: no spatial buffer (left); a strategy in which units
are selected only if they do not fall within a small distance (buffer) of another selected unit (middle); and a
strategy with a high distance buffer. Units in the center, which are most likely to be close to another unit,
are selected with low probability in the "big buffer" case. These units have mid-level baseline outcomes.
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Say the researchers also know that units in the north have higher baseline outcomes (e.g.

higher turnout rates) than those in the south. This knowledge is represented in Figure 3 with

darker shading of areas farther north.

To understand the properties of different designs, researchers can declare designs that include

this knowledge in the declaration of potential outcomes and vary sampling strategies. Again we

make use of a design template, this time make_spillover_design, that takes arguments for buffer

size, buffer, and the size of the distance effect, dist_effect. With a template in hand, multiple

designs can be quickly generated and compared:

make_spillover_design <- get_template("spatial_spillovers")

spillover_designs <- quick_design(

template = make_spillover_design,

buffer = vary(0, 3, 4),

dist_effect = vary(0,1,3),

intersect = TRUE)

compare_designs(design = spillover_designs)

We can then assess the inferential properties of these different sampling strategies under

different assumptions about the strength of spillovers through Monte Carlo diagnosis.

Results. The results are displayed in Figure 4. They illustrate that, whereas large buffers do help

to avoid bias, they can also increase the expected error of the estimator. Effectively, efficiency is

lost because sampling more distant units induces imbalance. In this example, if the researcher

expected only weak spillovers at most, she might be better to avoid a spatial buffer altogether:

this minimizes the RMSE at the expense of only a small amount of bias. However, this tradeoff

is different if there is reason to expect strong spillovers: the reduction in bias from including a

spatial buffer is proportionally greater than the increase in RMSE, especially in the shift from no

buffer to a small one.

4.3 Illustration of Assignment Decisions: Assigning Multiple Treatments

The Challenge. In experimental work, researchers are frequently faced with a choice between

running a 2-by-2 factorial design or a three-arm trial. Different considerations come in to play

depending on the estimands of interest and the type of interactive effects researchers might

expect. Consider a situation in which a researcher is considering two treatments and is interested
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Figure 4: Diagnoses of Designs with Varying Spatial Buffers for Sampling Units Illustrate a Bias-
Variance Tradeoff. The bias (left) and root mean-squared-error (right) are displayed for designs with no
buffer for sampling units (solid lines; circles), a small distance buffer (dark gray dotted lines; triangles),
and a big distance buffer (light gray dashed lines; squares) as a function of the level of spillover effects
that are declared in the potential outcomes function (x axis).

in the effect of each treatment conditional on the other treatment being in the control condition.

In assessing the two strategies they are conscious that the three arm trial lets them use only

two thirds of the data for each comparison whereas the factorial design lets them use 100% of

the data for each comparison. This is the point made by Fisher (1992). However to use 100%

of the data they need to use data for cases that are in treatment condition for treatment 2 when

assessing the effects of treatment 1 and vice versa. Such overlap can introduce risks of bias for

assessing the estimands of interest.16

The question here is: Should researchers use a factorial design or a three arm design when their

estimand for each treatment is conditional on the absence of the other treatment?

Again we answer the question by declaring and diagnosing a set of possible designs.

Design Declaration. We assume an experimental population of 500 subjects. Potential outcomes

are a function of exposure to treatment 1 (Z1), treatment 2 (Z2), and their interaction.

16One might object that the factorial design is not biased—its utility lies in its ability to estimate the effects of
treatment 1 in the absence and presence of treatment 2. Some of the remarks in Fisher (1992) go in this direction.
This response however runs the risk of identifying the estimand as whatever it is that the estimator shoots at. In
practice however researchers have estimands in mind, such as average treatment effects, and may select factorial
design because of properties such as efficiency, or allowing the possibility to estimate interaction effects, without
intending to alter estimands on main effects.
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We consider two assignment procedures, one in which subjects are assigned to each cell

of a 2 ˆ 2 with probability 1/4 and one in which subjects are assigned to a control condition,

treatment 1, or treatment 2, each with probability 1/3. The estimands are as described above.

The two estimators are the coefficients on the treatments from from an OLS regression of the

outcome on indicators for each treatment.

Given the symmetry of the problem we focus on one treatment effect only. We use two

different assignment strategies to generate designs across a range of interaction effects, under

the two different assignment procedures:

make_factorial_design <- get_template("factorial")

factorial_designs <- quick_design(

template = make_factorial_design,

assignment_strategy = vary("two_by_two","three_arm"),

interaction_coefficient = vary(0.00,0.05,0.10,0.15,0.2,

0.25,0.30,0.35,0.4))

compare_designs(design = factorial_designs)

Results. The results of this diagnosis are presented in Figure 5. In the left-most panel, the bias

of each design is plotted on the vertical axis, while the size of the interaction is plotted on the

horizontal axis. When the true interaction term is equal to zero (i.e., the effect of treatment 1 does

not vary with the level of treatment 2), neither design exhibits bias. However, as the interaction

between the two treatments is stronger, the factorial design renders estimates of the effect of

treatment 1 that are more and more biased relative to the “pure” main effect estimand.

In the center panel, the root-mean-squared error of each design is plotted on the vertical axis.

This panel shows that there is a bias-variance tradeoff in this design. When the interaction term

is small or close to zero, the factorial design is preferred, because it more powerful: it compares

one half of the subject pool to the other half, whereas the three arm design only compares a third

to a third. However, as the magnitude of the interaction term increases, the precision gains are

offset by the increase in bias documented in the left-panel. In cases of high heterogeneity, the

three-arm design is then preferred.

This exercise highlights key points of design guidance. Researchers often select factorial

designs because they expect interaction effects: and indeed factorial designs are required to assess
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Figure 5: Diagnoses of Designs with Factorial or Three-Arm Assignment Strategies Illustrate a Bias-
Variance Tradeoff. Bias (left) and root mean-squared-error (right) are displayed for two assignment strate-
gies, a 2 ˆ 2 treatment arm factorial design (solid lines; circles) and a three-arm design (dark gray dotted
lines; triangles) according to varying values of the interaction effect specified in the potential outcomes
function (x axis).

these. However if the scientific question of interest is the pure effect of each treatment, researchers

should (perhaps counterintuitively) use a factorial design if they expect weak interaction effects.

5. Discussion

We have described a strategy for declaring research designs for which key “diagnosands” can

be estimated, given conjectures about the world. How might declaring and diagnosing research

designs in this way affect the practices of authors, readers, and replication authors? We believe

there are implications for how design choices are made, communicated, and challenged.

5.1 Making Design Choices

The move towards greater transparency places a premium on considering alternative analysis

strategies at early stages of research projects, not only because it reduces researcher discretion,

but also because it can improve the quality of the final research design. There is nothing new

about the idea of determining features such as sampling and estimation strategies ex ante in

order to maximize power. In practice, however, many designs are finalized late in the research

process, often after the data are collected. This may occur in part due to a lack of tools for
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adequately assessing the relevant properties of a research design and for exploring possible

analysis strategies before data are collected.

One of the most common tools to evaluate the properties of research designs is the power

calculator, which assesses the probability of finding a “significant” result given various assump-

tions about the data generating process and analysis strategy. Existing power calculators are

surprisingly rudimentary: they handle a very small set of special cases, and often do not show

how power varies as a result of the many design choices a researcher must make besides sample

size. There are no general tools for assessing power or other equally important properties, such

as unbiasedness, mean squared error, or coverage.

The lack of tools for design diagnosis is not only a problem for those conducting the research.

Readers of empirical studies and the authors of replication studies also need to assess the general

properties of research strategies, yet often lack the tools and information needed to do so.

The proposed procedure—declaring and diagnosing research designs—makes it possible and

relatively simple for researchers and reviewers to assess a range of statistical properties of re-

search designs and to compare them to alternatives.

We emphasize an obvious caveat to simulation-based defenses of design choices. A simula-

tion based claim to unbiasedness is good only with respect to the conditions of the simulation;

for example conditional on the potential outcomes functions posited. In this sense claims for

properties of strategies are more robustly made based on analytic results. Often however, the

complexity of a given research design prohibits analytic interrogation of diagnosands. Con-

versely, a simulation based critique of a strategy—such a demonstration that a strategy is biased

for some estimand—may be powerful even when general analytic results do not exist.

5.2 Communicating Design Choices

Bias in published results can arise for many reasons. For example, researchers may deliberately

or inadvertently select analysis strategies because they produce statistically significant results.

Proposed solutions to reduce this kind of bias focus on various types of preregistration of analysis

strategies by researchers (Rennie, 2004; Zarin and Tse, 2008; Casey, Glennerster and Miguel, 2012;

Nosek, 2014; Green and Lin, 2016). Study registries are now operating in numerous areas of social

science, including those hosted by the American Economic Association, Evidence in Governance
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and Politics, and the Center for Open Science.

However, the effectiveness of design registries in reducing the scope for fishing depends

on clarity over which elements must be included in a precommitment document. In practice

some registries rely on various checklists and pre-analysis plans exhibit great variation, ranging

from lists of written hypotheses to all-but-results journal articles. In our view, the solution

to this problem does not lie in ever-more-specific questionnaires, but rather in a new way of

characterizing designs whose analytic features can be diagnosed through simulation.

The criteria we propose clarify what is required in order to preregister a study in a way

that ensures sufficient analytically relevant detail is provided. Our framework provides a set of

generalizable procedures that promise to standardize the way in which designs are preregistered.

These procedures will make it easier for researchers and third parties to understand when a

plan is consistent with the standards required for effective preregistration. Rather than asking:

“are the boxes checked?” the question becomes: “can it be diagnosed?” A design can only be

diagnosed when sufficient detail has been provided to analytically characterize diagnosands or

to conduct Monte Carlo simulations of the implementation of the design from beginning to end.

Declaration of a θ-complete design also enables a final and infrequently practiced step of the

registration process, in which the researcher “reports and reconciles” the final with the planned

analysis. Declaring the features of a design ex ante and ex post makes possible the identification

of deviations from an analysis plan. Understanding how the two diverge is a central part of

assessing whether the results should be viewed as exploratory or confirmatory.

5.3 Challenging Design Choices

The independent replication of the results of studies after their publication is an essential com-

ponent of the shift toward more credible science. Be it verification and reanalysis of the original

data, or reproduction of results through the collection of fresh data, replication provides in-

centives for researchers to be clear and transparent in their analysis strategies, and can build

confidence in the robustness of findings.17

A declaration of a design that can be simulated, implemented, and diagnosed facilitates

replication by rendering the design itself transparent. Indeed replication (sometimes called pure

17For a discussion of the distinctions between these different modes of replication, see Clemens (2015).
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replication, analytic replication, or verification) using the same data becomes technically trivial.

For this exercise the question becomes not whether the code produces what the authors claim,

but whether the code is correct.

More subtly, a complete declaration can also inform the re-analysis and critique of published

research and allow for a different approach to reanalysis. A standard practice for replicators

engaging in reanalysis is to propose a range of alternative strategies and assess the robustness of

the data-dependent estimates to different analyses. A more coherent strategy, if it were possible,

would be to assess the robustness of the analysis strategy to different ways in which the data

may have been generated. The problem with the standard approach to reanalysis is that when

divergent results are found, third parties do not have clear grounds to decide which results to

believe. This issue is compounded by the fact that, in changing the analysis strategy, replicators

risk departing from the estimand of the original study, possibly providing different answers to

different questions. In the worst case scenario, it can be difficult to determine what is learned

both from the original study and from the replication.

Design declaration enables a new type of replication: the “design replication.” In a design

replication, a scholar restates the essential design characteristics to learn about what the study

could have revealed, not just what the original author reports was revealed. This helps to answer

the question: under what conditions are the results of a study to be believed? By providing a

structure to compare the abstract properties of alternative analyses, design declaration provides

grounds to support alternative analyses on the basis of the original authors’ intentions and not

on the basis of the degree of divergence of results. Conversely, it provides authors with grounds

to question claims made by their critics. We provide an example of a design replication of a study

for which data is currently not available in Blair et al. (2016b). In that replication we illustrate

how the strategy employed by Björkman and Svensson (2009) could under some reasonable

data generating processes give rise to biased results. We emphasize that this exercise does not

demonstrate bias rather it simply helps locate possible sources of bias.

Table 1 shows possible situations that may arise. In a declared design an author might specify

situation A: a particular set of claims on the structure of potential outcomes and an estimation

strategy. A critic might then question the claims on potential outcomes (for example questioning

SUTVA) and/or question estimation strategies (for example arguing for the need to include or
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Author’s assumed
potential outcomes

Alternative claims on
potential outcomes

Author’s proposed estimation strategy A B
Alternative estimation strategy C D

Table 1: Diagnosis Results Given Alternative Assumptions on Potential Outcomes and Alternative
Estimation Strategies. Four scenarios encountered by researchers and reviewers of a study are considered
depending on whether the potential outcomes function or the estimation strategy differs from the author’s
original strategy.

exclude some control variables from an analysis), or both.

In this context here are several possible criteria for admitting alternative estimation strategies:

• Home ground dominance. If ex ante the diagnostics for situation B are better than for A

then this gives grounds to switch to B. That is, a critic can demonstrate that an alternative

estimation strategy outperforms an original estimation strategy even under the data gener-

ating process assumed by an original researcher, then they have strong grounds to propose

a change in strategies. Conversely if an alternative estimation strategy produces different

results, conditional on the data, but does not outperform the original strategy given the

original assumptions, this gives grounds to question the reanalysis.

• Robustness to alternative potential outcome functions. If the diagnostics in situation B are

as good as in A but are better in situation D than in situation C this provides a robustness

argument for altering estimation strategies.

• Potential outcomes plausibility. If the diagnostics in situation A are better than in situation

B, but the diagnostics in situation D are better than in situation C, then this is cause for

worry and the justification of a change in estimators depends on the plausibility of the

different assumptions on potential outcomes.

As an illustration of the application of these principles, consider a situation in which a re-

searcher produces an estimate of an average treatment effect. A critic notes that the treatment

is highly correlated with a covariate, not included in the original analysis, and that significance

is lost once the control is included. The researcher might then counter that although results

are sensitive to the inclusion of the control, the new strategy does not satisfy home ground

dominance—that is, given prior assumptions about potential outcomes, the diagnostics from the
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new estimation strategy are not better than those from the original strategy. The critic could then

describe an alternative potential outcomes function and demonstrate either that the new strategy

is more robust to alternative potential outcomes functions or that it is preferable on the basis of

potential outcome plausibility—for example by using the data to demonstrate that the covariate

is prognostic of potential outcomes contrary to researcher assumptions. In all cases, transparent

arguments can be made by formally comparing the original design to a modified design.

While such criteria will not eliminate disputes they should at least help focus the discussion

on the analytically relevant issues.

5.4 Limitations and Risks of the Proposed Approach

We describe a procedure for characterizing and diagnosing designs before implementation. Ex

ante declaration and diagnosis of designs can help researchers improve their properties. It can

make it easier for readers to evaluate a research strategy prior to implementation and without

access to results. It can also make it easier for designs to be shared and to be critiqued. Our

proposed framework and software aims to facilitate these steps. However, the creation of a set of

tools to evaluate the completeness and quality of research designs also creates a set of risks. We

outline four.

The first risk is that evaluative weight gets placed on essentially meaningless diagnoses. Given

that design declaration includes declarations of conjectures about the world it is possible to

choose numbers so that a design passes any diagnostic test set for it. Fortunately, however, the

advantage of the formal declaration is that the basis for the diagnoses can be examined and new

diagnostics can be generated quickly given alternative specifications of data generating processes

while keeping other design elements intact. Even still, the risk remains that if the grounds for

diagnoses are not inspected, designs may be favored because of the optimism of the designers

rather than because of the inherent qualities of the design.

A second risk is that research gets evaluated on the basis of a narrow but perhaps inap-

propriate set of diagnosands, such as power, bias, or RMSE. In fact, the appropriateness of the

diagnosand depends on the purposes of the study. The optimal bias-variance tradeoff for exam-

ple might depend on whether the interest is in assessing properties of a specific case or whether

a study is contributing to a larger literature. To help guard against this risk we provide a range
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of diagnosands as defaults in our software and allow users to define their own diagnosands. In

this way, the evaluative grounds for research may be widened for example by making it easier for

researchers to demonstrate the value of a research design that carries risk of bias but has other

valuable properties.

A third risk is that as the evaluation of formal properties of a design become easier, evalua-

tive weight shifts away from the substantive importance of a question being answered. A similar

concern has been raised regarding the “identification revolution” where a focus on identifica-

tion risks crowding out attention to the importance of questions being addressed (Huber, 2013).

Similarly there could be a risk that less attention is paid to measurement issues, which largely

fall outside our framework. It is also possible however that simplification of the evaluation of

formal properties of a design allow for a shift in attention towards examining other properties of

a design such as measurement strategy or substantive and theoretical relevance. More creatively,

it may also be possible to think of substantive importance as a diagnosand—for example one

could declare as a diagnosand the likelihood that the research will contribute new knowledge to

a given question (whether or not it is excellent statistical properties).

A fourth risk is that the variation in the suitability of design declaration to different research

strategies that we outlined above is taken as evidence of the relative superiority of different

types of research strategies. We believe that the range of strategies that can be declared and

diagnosed is wider than what one might at first think possible, and we sketch above outlines

for declarations of descriptive, experimental, observational, quasi-experimental, and qualitative

strategies. We argue that there is value in formally declaring designs when this is possible. There

is no reason to believe, however, that all strong designs can be declared either ex ante or ex post.

An advantage of our framework, we hope, is that it can help clarify when a strategy can or cannot

be completely declared. In cases in which a strategy can not be declared, nondeclarability is all

that the framework provides, and in such cases we urge caution in drawing broader inferences

about design quality.
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A. Types of Estimators and Estimands

This section expands on the discussion in Section 1 on estimators and estimands.

A.1 Estimands

This formalization helps us distinguish between analytically distinct classes of estimand.

• A “post-treatment” estimand is an estimand that is conditional on the particular assign-

ment to treatment (in a particular sample). For example assuming a binary treatment, and

let Yp1piqq denote the assignment vector Y in which only unit i is assigned to treatment and

let Yp∅q denote the assignment in which no units are assigned to treatment. Let Y1 denote

a treatment and Y2 an outcome of interest. Conditional on a realization of X, the average

effect on the treated is defined as

τATTpd,Dq “ Ei:y1
i “1pY2

i pZ1p1piqq|xq ´ Y2
i pZ1p∅qq|xq

Note that here the definition of the population of interest for the estimand is given by

Y1 not Z1—that is by the set that are in treatment, whether or not they are included in

the experimental population. The estimand however is based on the potential outcomes

that would be observed had all units been experimentally assigned to different conditions,

whether or not they were (Z1).

Under our formulation sampling is itself a type of treatment. Thus the “sample average

treatment effect,” SATE, is itself a post-treatment estimand, that depends on the outcomes

of a sampling decision, and the sample average treatment effect on the treated, SATT,

depends on both sample selection and treatment assignment. These are all post-treatment

estimands in our framework though some may be defined conditional on the assignment of

some treatments and with respect to possible assignments of other treatments. To illustrate

the expected SATT depends on a particular outcome from sampling but not on a particular

treatment assignment.18

• A “population estimand” depends upon a particular population but not a particular as-

18Though one could also define an expected SATT that is conditional on a treatment assignment in a population
but not on a particular sample.
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signment. For example, we could also define a notion of an expected SATT in a population

that is does not condition on a sample or an assignment, as τESATT “
ş ş

τSATTdpZ1 dpZ2 .

Where Z1 is a sampling decision and Z2 is a treatment decision. This particular popula-

tion estimand depends on the sampling scheme and the assignment scheme, though other

population estimands, such as the population average treatment effect, might not.

Given uncertainty on X we can also define expected population estimands: τEPATT “
ş

τEPATTd fX.

These estimands are themselves of different types:

• A “design independent estimand” is an estimand that does not depend on the design, pZ.

For example the PATE, can be defined as ENpY2
i pZ1p1piqqq ´ Y2

i pZ1p∅qqq where EN is the mean

over units in a population. The PATE, thus defined, is a design-independent population

estimand.

• A “universal estimand” for group N is an estimand that is defined for all subgroups of N.

• A “decomposable estimand” is an estimand that can be written in the form: τN “
ř

iPN
1
N τi.19

Note that every decomposable estimand is universal. The estimand τN “ EiPNpYip1q ´ Yip0qq

is universal and decomposable. The estimand τN “ maxiPNpYip1q ´ Yip0qq is universal but not

decomposable. The estimand τN “ 1
2

1
#ti:Xi“0u

ř

ti:Xi“0upYip1q ´ Yip0qq ` 1
2

1
#ti:Xi“1u

ř

ti:Xi“0upYip1q ´

Yip0qq is neither decomposable nor universal.

A.2 Estimators

A design independent estimator is one that depends on the realized data only. For example the

difference in means estimator depends on the data only.

τ̂DIMpDq “ Ei:Y1
i “1Y2

i ´ Ei:Y1
i “0Y2

i

For an example of an estimator that is not design independent, consider an inverse probability

weighted estimator for a two arm design. Let π
j
i “

ş

IpZ1
i “ jqdpZ1 denote the probability of

individual i to be in treatment condition j. Let Si indicate whether π
j
i P p0, 1q for all j. Then let

19For a discussion of aggregative and decomposible indices, see for example Bourguignon (1979).
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wj
i “

ř

k:Y1
k “j,Sk“1 π

j
k

1
π

j
i

denote the inverse probability weight. Then the inverse probability weight

estimator can be written:

τ̂IPWpD, pZq “
ÿ

i:Y1
i “1,Sk“1

w1
i Y2

i ´
ÿ

i:Y1
i “0,Sk“1

w0
i Y2

i

Note that the estimator only uses data from units for which there is a positive probability

of being in every condition, though that does not necessarily mean that the associated estimand

is for that subgroup. Here π
j
i depends on the design through pZi and wi additionally depends

on the realization of Z1. Thus the “data” required to define the IPW estimator includes all the

weights that would result from all assignments to treatment.

Standard errors and confidence intervals can also generated by estimators. The confidence

interval estimated by inverting randomization inference tests uses a design-dependent estimator

as is the confidence interval estimated using Neyman standard errors. The confidence interval

generated using the HC2 robust estimator for standard errors, though equivalent in some cases

to a Neyman estimator is data-based.

B. Illustrations of Design Formalization

We illustrate the formalization in two parts, focusing first on the causal structure, and second on

estimands and diagnosands.

B.1 Illustration: Study structure

Figure 1 above illustrated the structure of studies implied by this formalization and the effec-

tiveness and modularity assumptions. As noted, this example encompasses both experimental

and non-experimental studies depending on whether idle is set for all subjects. A number of

features of Figure 1 are worth highlighting.

• For each outcome variable Y j there is a manipuland Zj that points to Y j but only to Y j

in the Y class of variables. Z variables may point to each other however, representing the

possibility that a researcher may condition one assignment on the realization of another

assignment. Thus modularity is represented here as exclusion restrictions in the DAG.

• Perhaps confusing in terms of notation, treatment is labeled as Y1 (though in other discus-
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sions it is labeled as X, D, Z, or W to distinguish it from outcomes, which take Y labels).

This is done to allow for a distinction, available for all the Y variables, between values

taken due to direct manipulation and values taken without manipulation (i.e. idle). In

observational reserach designs, all units are set to idle for treatments.

• We include τ̂ in the graph to highlight the fact that an estimate is itself a potential outcome

in which case it could in principle be counted among the set of random variables Y.

• τ̂ may be affected by Xo directly (for example using an estimator with covariates) but is

affected by Xu only through the measured outcome, Y6.

• Measurement is itself an outcome with an associated manipuland. This allows one to

include in superdata what would be measured if an unmeasured variable were measured.

• The estimand τ is not a node on the DAG.

B.2 Illustration: Estimands and Diagnosands

To illustrate the calculation of estimands and diagnosands, we consider a population with N “ 3

units. A manipuland Z1 determines whether each unit is put in a treatment condition Y1
i “ 1 or

a control condition Y1
i “ 0 or is left untouched by the researcher (in which case they could self

select into either of these two conditions, possibly as a function of the assignment of other units).

Treatment status determines an ultimate outcome of interest Y2. The key quantities of interest

include:

• The estimand of interest is the average across all units i, of the difference between the

condition in which unit i only is assigned to treatment (and all other units are assigned to

control) and the condition in which all units are assigned to control. Call this τ.

• A summary statistic of interest, τ̂ is the difference between the average outcome in treated

(y1 “ 1) and untreated units (y1 “ 0). Here this is an estimate of τ using data on items

whose value on Z1 was not idle, though one could also estimate τ using all data.

• A diagnostic statistic of interest is the difference between τ̂ and τ.
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• A diagnosand of interest is the expected value of this diagnostic statistic, which is the bias

of the difference in means estimator for the average causal effect.

Consider now an assignment scheme, pZ, in which exactly one of the three units is randomly

assigned to treatment, one is assigned to control, and one is not assigned by the researcher at

all. There are six possible assignment vectors of this form. Assume that pZ assigns a 1 in 6

probability to each of these assignment vectors. A single draw could give rise to assignment

Z1 “ t1, 0, mu, for example.

Table 2 illustrates ten possible datasets d that could arise given different realizations of Z1, the

first six of which are given positive probability under pZ; the last four are potential realizations,

even though they are never assigned under the randomization scheme. These rows, together

with the assignments not included, form the superdata, D.

The second and third columns of Table 2 show that Y1 takes the values given by Z1 when

Z1 is not idle. However, when Z1 is idle the value taken by Y1 can depend on which units are

assigned. In this illustration, unit 3 is idle in both assignments 1 and 5 but takes on different

values of Y1. Similarly, potential outcomes, Y2, are a function of the entire vector Y1. We see in

this example that there is no imposition of SUTVA; in particular unit 1 has a different value of

Y2 under assignments 1 and 2.

Returning to the quantities of interest, note:

• The estimand can be calculated by comparing outcomes across different assignment vectors.

It is found by taking the average of y2
1 in assignment 7, less y2

1 in assignment 10, y2
2 in

assignment 8, less y2
2 in assignment 10, and so on. In this example the estimand is 4, indeed

the treatment effect for each unit (when all others are in control) is 4.

• Estimates can be calculated from Y1 and Y2 directly and can be calculated even for as-

signments that receive zero probability under pZ. Note however that estimates cannot be

calculated for the uniformity trial (assignment 10).

• The diagnostic statistic is calculated separately for each realization, but depends in part

on the unobserved realizations 7 - 10. The diagnostic statistic in the final column is not a

potential outcome since it depends on τ.
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• The expected value of the diagnostic statistic is the diagnosand. This is taken with respect

to the probability distribution pZ. Here it is the expected difference between θ̂ and θ and

takes the value ´8{6.

The diagnosand tells us that the estimator is biased. The bias comes from the fact that unit 2

exhibits spillover effects when it is assigned to control and both other units are treated. A design

that controlled unit 1 and unit 3 only and ignored unit 2 would not suffer from bias.

The introduction of possible idle conditions lets us be more precise about relatively subtle

features of the definition of estimands. To illustrate, consider a researcher that introduced as-

signment 1 and used data on units 1 and 2 only. Say the researcher claimed to be interested in

the sample average treatment effect; they estimate an effect of 0. But what is the estimand? In

our calculations we used assignment 10 as the base condition for defining the estimand, but the

researcher could instead respond that assignment 9 is more appropriate; it is after all the assign-

ment in which the controlled units are both in the control condition and which the non controlled

unit is in the treatment condition. With that base condition the bias is not so great. One might

worry however that the uncontrolled unit is only in the treatment condition because of the par-

ticular assignment of controlled units to treatment. With a different assignment (assignment 5),

the non controlled unit behaves differently. The key point is that the outcomes in study units can

depend on which units enter a study and can in turn affect the definition of the estimand and

the definition of a sample estimand can make use of population potential outcomes.

We also see effects of self selection that are different from the usual concern. If data on all

units were used, further bias could be introduced even though all units in this example have

the same treatment effects and indeed have the same outcomes in the uniformity trial and in

the assignments in which they alone are selected. The reason is that unassigned units whose

potential outcomes are affected by spillovers could self-select into or out of treatment. To see this

note that, if data from self selecting units were used, the only difference in estimates would be

under assignment 5, in which case the estimated effect would be 2 rather than 4, because idle unit

3 self-selected to control and experienced changes in potential outcomes due to the assignment

of unit 2.
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pZ1 Z1 Y1 Y2 Y3 “ pτ t

Assignment Probability of Manipuland Actual Potential Estimate Diagnostic ´ Stat.
Index Assignment Assignment Outcome Diff.-in-means pτ ´ τ
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4
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1
0
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1
0
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4
0
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0
1
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0
1
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0
4
0
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»
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0
1
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»
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0
0
1
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»

–

4
4
4
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fl Ñ 0 Ñ 0

10. 0

»

–

0
0
0
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»
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0
0
0

fi

fl Ñ

»

–

0
0
0

fi

fl Ñ NaN Ñ NaN

Eppτq “ 16
6 θbias “ Eptq “ ´ 8

6

Table 2: Illustration of the Outcomes of a Research Design as a Function of Potential Random Assign-
ments. Ten possible assignments of a manipuland Z1 are displayed. The estimand τ “ 4 is defined as the
average difference between potential outcomes for a unit in an assignment in which it is assigned to treat-
ment and all other units assigned to control and its potential outcomes under an assignment in which all
units assigned to control (here, assignment 10). NaN indicates that the estimates and diagnostic statistics
are undefined in assignments 9 and 10, due to division by zero because there are no units assigned to the
treatment condition. The expectation of the estimator Epτ̂q and the bias diagnosand θbias are displayed at
the bottom of the table.
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C. Diagnoses for the Examples in Section 3

The code examples can be downloaded from the internet and run using the free, open source

statistical package R. First, install the DeclareDesign software as follows:

source("https://declaredesign.org/install.R")

Code for running the examples is below. The complete replication code for Section 3 and Section

4 is available at https://declaredesign.org/paper/replication.Rmd. Further details on the R soft-

ware package, including other examples and documentation, can be found at declaredesign.org.

C.1 Descriptive Inference

# Download design object from design library

design <- get_design("descriptive_inference")

# Diagnose the design

diagnose_design(design = design)

diagnosand_label diagnosand

mean(estimand) 0.488
mean(estimate) 0.509
sd(estimate) 0.056
power 0.070
bias 0.021
RMSE 0.060
coverage 0.931

C.2 Discovery

# Download design object from design library

design <- get_design("discovery")

# Diagnose the design

diagnose_design(design = design)

estimator_label diagnosand_label diagnosand

estimator_right mean(estimand) 0.500
estimator_right mean(estimate) 0.504
estimator_right sd(estimate) 0.185
estimator_right bias 0.004
estimator_right RMSE 0.185
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estimator_label diagnosand_label diagnosand

estimator_right coverage 0.952
estimator_right power 0.771
estimator_right type S rate 0.003
estimator_split_sample mean(estimand) 0.500
estimator_split_sample mean(estimate) 0.635
estimator_split_sample sd(estimate) 0.322
estimator_split_sample bias 0.135
estimator_split_sample RMSE 0.349
estimator_split_sample coverage 0.697
estimator_split_sample power 0.606
estimator_split_sample type S rate 0.023
estimator_wrong mean(estimand) 0.500
estimator_wrong mean(estimate) 1.000
estimator_wrong sd(estimate) 0.045
estimator_wrong bias 0.500
estimator_wrong RMSE 0.503
estimator_wrong coverage 0.000
estimator_wrong power 1.000
estimator_wrong type S rate 0.000

C.3 Matching

# Download design object from design library

design <- get_design("matching")

# Diagnose the design

diagnose_design(design = design)

estimator_label diagnosand_label diagnosand

dim mean(estimand) 1.000
dim mean(estimate) 3.395
dim sd(estimate) 0.080
dim bias 2.395
dim RMSE 2.396
dim coverage 0.000
dim power 1.000
dim type S rate 0.000
matching mean(estimand) 1.000
matching mean(estimate) 1.517
matching sd(estimate) 0.069
matching bias 0.517
matching RMSE 0.522
matching coverage 0.000
matching power 1.000
matching type S rate 0.000
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C.4 Regression Discontinuity

# Download design object from design library

design <- get_design("regression_discontinuity")

# Diagnose the design

diagnose_design(design = design)

diagnosand_label diagnosand

mean(estimand) 0.000
mean(estimate) 0.009
sd(estimate) 0.230
bias 0.009
RMSE 0.230
coverage 0.948
power 0.052
type S rate 1.000

C.5 Model-Based Estimands

# Download design object from design library

design <- get_design("model_based_estimand")

# Diagnose the design

diagnose_design(design = design)

diagnosand_label diagnosand

mean(estimand) 2.000
mean(estimate) 2.143
sd(estimate) 0.422
bias 0.143
RMSE 0.446
coverage 0.964
power 0.983
type S rate 0.000

C.6 Bayesian Estimation Strategies

# Download design object from design library

design <- get_design("bayesian_estimation")

# Diagnose the design

diagnose_design(design = design)
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estimator_label diagnosand_label diagnosand

flat_prior Avg. % Reduction in Variance (Prior vs. Posterior) -0.981
flat_prior Avg. Maximum A Posteriori 0.210
flat_prior Avg. Posterior Mean 0.216
flat_prior Bias in Maximum A Posteriori 0.000
flat_prior Bias in Posterior Mean 0.005
flat_prior Coverage Probability of Posterior Mean 0.825
flat_prior Average Shift in Mean (Prior vs. Posterior) -0.284
flat_prior True Population Proportion 0.210
info_prior Avg. % Reduction in Variance (Prior vs. Posterior) -0.967
info_prior Avg. Maximum A Posteriori 0.216
info_prior Avg. Posterior Mean 0.221
info_prior Bias in Maximum A Posteriori 0.005
info_prior Bias in Posterior Mean 0.011
info_prior Coverage Probability of Posterior Mean 0.816
info_prior Average Shift in Mean (Prior vs. Posterior) -0.279
info_prior True Population Proportion 0.210

C.7 Process tracing

# Download design object from design library

design <- get_design("process_tracing")

# Diagnose the design

diagnose_design(design = design)

diagnosand_label diagnosand

Estimand 0.500
Est based on SG 0.524
Bias 0.024
Conditional bias when K seen 0.000
Conditional bias when K not seen 0.026

D. Diagnoses for the Examples in Section 4

D.1 Gains from Covariate Controls

# Download design object from design library

design <- get_design("covariate_control")

# Diagnose the design

diagnose_design(design = design)
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estimator_label diagnosand_label diagnosand

M1 mean(estimand) 0.750
M1 mean(estimate) 0.997
M1 sd(estimate) 0.406
M1 bias -0.003
M1 RMSE 0.406
M1 coverage 0.950
M1 power 0.646
M1 type S rate 0.005
M2 mean(estimand) 0.750
M2 mean(estimate) 0.997
M2 sd(estimate) 0.415
M2 bias -0.003
M2 RMSE 0.415
M2 coverage 0.951
M2 power 0.628
M2 type S rate 0.007
M3 mean(estimand) 0.750
M3 mean(estimate) 0.997
M3 sd(estimate) 0.422
M3 bias -0.003
M3 RMSE 0.422
M3 coverage 0.953
M3 power 0.614
M3 type S rate 0.007
B mean(estimand) 0.750
B mean(estimate) 0.010
B sd(estimate) 0.707
B bias 0.010
B RMSE 0.707
B coverage 0.957
B power 0.043
B type S rate 1.000

To download the template used in this section, type,

template <- get_template("covariate_control")

D.2 Handling Spatial Spillovers

# Download design object from design library

design <- get_design("spatial_spillovers")

# Diagnose the design

diagnose_design(design = design)
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diagnosand_label diagnosand

mean(estimand) 1.000
mean(estimate) 0.944
sd(estimate) 4.241
bias -0.056
RMSE 4.241
coverage 0.000
power 1.000
type S rate 0.407

To download the template used in this section, type,

template <- get_template("spatial_spillovers")

D.3 Assigning Multiple Treatments

# Download design object from design library

design <- get_design("factorial")

# Diagnose the design

diagnose_design(design = design)

diagnosand_label diagnosand

mean(estimand) 0.000
mean(estimate) 0.000
sd(estimate) 0.178
bias 0.000
RMSE 0.178
coverage 0.953
power 0.047
type S rate 1.000

# Download design object from design library

design <- get_design("three_arm")

# Diagnose design

diagnose_design(design = design)

diagnosand_label diagnosand

mean(estimand) 0.500
mean(estimate) 0.499
sd(estimate) 0.111
bias -0.001
RMSE 0.111
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diagnosand_label diagnosand

coverage 0.950
power 0.994
type S rate 0.000

To download the template used in this section, type,

template <- get_template("factorial")
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